The Refined-Language Aproach
To Compiling

For Parallel Supercomputers

by
Henry G. Dietz
May 1987

Taken from the dissertation submitted to theulty of Polytechnic Unersity in partial fulfill-
ment of the requirements for thegilee of Doctor of Philosogh(Computer Science), June
1987. Minor edits were made for formatting and contact information, and #rision vas

posted September 2017 at http://aggregate.org/REFINED/thesis.pdf.



Microfilm or other copies of the dissertation upon

which this report is based are obtainable from

UNIVERSITY MICROFILMS
300 N. Zeeb Road
Ann Arbor, Michigan 48106



CIRRICULUM VITAE
May 1987

Henry G. Dietz

Born November 12, 1959 in Rockville Centre, We&ork, Dietz receied his primary and secondary
education in the Garden Citilen York, public school system. FromalF 1977 through Spring 1979 he
attended Columbia Uwérsity From FRall 1979 he attended the Polytechnic Institute oivNérk (nov
Polytechnic Uniersity), where he earned both B.S. and M.$yreles in Computer Science. He success-

fully defended his Ph.D. dissertation in August 1986.

While a graduate student at Polytechnicugnsity, Dietz was supported by geral special (research)
fellowships. There, in addition toverseeing the Sperry Microprocessor Systems Laboradtergd a num-
ber of research ffrts involving computer aided instruction, semantic translation, parallel computer archi-
tecture, digital halftoning, and parallelizing compilers. He is autborco-authar of over one dozen

research reports and monographs, as well as author or co-author of numerous published papers.

As an Academic Associate at Polytechnic\uénsity and as an Adjunct Professor at both Polytechnic
University and Steens Institute of &chnology he taught and regainized a number of courses including
both schools’ graduate courses in Compiler Design and Construction. Since August 1986, Dietz has held
an appointment as Assistant Professor of Electrical Engineering (Computer Engineering) at Pwetue Uni

Sity.

In September 2017, DDietz is a Professpand James.Hardymon Chair in Netarking, in the
Electrical and Computer Engineering Department at theddsity of Kentuck in Lexington, Kentucl.

His current contact information is posted at http://aggregate.org/hankd.



-iv-

To my parents,

Henry and Gloria Dietz.



AN ABSTRACT

The Refined-Language Aproach
To Compiling
For Parallel Supercomputers

by
Henry G. Dietz
Advisor: A. David Klappholz

Submitted in Artial Fulfillment of the Requirements

for the Dgree of Doctor of Philosogh(Computer Science)

June 1987

To produce dicient code for a program which is to beseuted using a particular parallel supercom-
putet it is vital that the compiler empjadetailed knwledge of both the algorithm and thegetr machine.
However, the specifications of algorithms in e@mtional, sequential, languages often are ndicgaritly
precise; information which the programmer wn@and which the compiler must use to generdfieieft
parallel code, is either hidden or lost because the language doesvité preay to express that informa-
tion. In addition, although mancompilation technologies fia been deeloped to support specific classes
of speedup-oriented parallel supercomputgatively little has been done to unite thesdedént compila-
tion technologies in a consistent wief code generation for all parallel machines; this has often led to
extremely cleer code generation resulting in code which is inappropriate for tpet taiachine and there-
fore slaw.

The refined-language approach is an holistic gyater solving the problem of compiling, and pro-

gramming, for speedup-oriented parallel supercomputers. So that informati@antéteparallelization of

an algorithm is not lost when the program is written, werideoguidelines for “refining” the definition of



-Vi-

programming languages to permit the programmegplicitly state, as part of his/her programs, this infor
mation. W further propose a framerk for automatic parallelization and related compiler technologies
which spans manclasses of architecture and highlights the close relationship betweemitional opti-
mization and optimizing parallelization. \&®al nev parallelization techniques are embedded in this dis-

cussion.

A prototype refined-C (RC) compildsased on full ANSI C and @eted to a MIMD supercomputer
has beendlt. Although this compiler has not been thoroughly benchredykt has demonstrated both that
language refinement greatly impes the speed and accuradf compile-time analysis and that, at least in
some cases, fgfient parallel code can be generated for constructs whicthdwhare been sequential using

other techniques.



1
1:1.
1:2.
1:3.
1:3.1.
1:3.2.
1:4.

2:1.
2:1.1.
2:1.1.1.
2:1.1.2.
2:1.1.3.
2:1.1.4.
2:1.2.
2:1.2.1.
2:1.2.2.
2:11.2.2.1.
2:1.2.2.2.
2:1.2.2.3.
2:11.2.2.4.
2:1.2.3.
2:1.2.3.1.
2:1.2.3.2.
2:1.2.4.
2:1.2.4.1.
2:11.2.4.2.

Table Of Contents

Intr oduction
Refined Languages
Compilation Of Refined Languages
Programming Support
Reuse Of Existing Code
Modification Of Code

Owerview Of This Document

Languages Br Parallel Computers
Speedup-Oriented Languages
Explicit Specification O&Rallelism
B: Multiple Sequential Programs
C: La-Level Explicit Parallelism
D: Non-Sequential Control
E: Data And Contrchiallelism
Sequential Control Structures
A Classification Scheme
F: Unrestricted Sidefédts
RRAPHRASE
BILLDOG
PDOL
PREFINE
Restricted/No Sidefé&dts

H: Single Assignment Languages

G: Functional And Applicati Languages

I: Annotated SidefBfts
Access Rlo

Refined Languages

-Vii-

1
1
3
4
4
5
6
9
9
11
12
12
13
13
14
15
16
18
18
20
20
21
22
23
23
23
24



-viii-

2:2.

2:2.1.
2:2.2.
2:2.3.

3:1.
3:1.1.
3:1.2.
3:1.3.
3:2.
3:2.1.

3:2.1.1.
3:2.1.2.

3:2.2.
3:2.3.

3:2.3.1.
3:2.3.2.

3:2.4.
3:3.

3:3.1.
3:3.2.

3:3.2.1.
3:3.2.2.

3:3.3.

3:3.3.1.
3:3.3.2.
3:3.3.3.
3:3.3.4.

3:3.4.

Efiiciency
Programming figiency
Compilation Efiency

Execution Eficiency

Refined Languages
Problems In Standard AFBRN
References Global Data (COMMONS)
ReferencesaPointers (Call-by-Address)
References Thdexed Data Structures
The FORAN Refinements
Access PermissiortsGlobals
COMMON Permissions
I/O Channel Permissions
Agument Rssing And Brameter Definition
FORRAN Indexing And Rartitions
Thunk-Based Implementation
Boolean Structure-Based Implementation
Conclusions
A Second Case Study: Refined C
Control Constructs In C
Function Prototypes
Permission® Arguments
Permission® Global Data
Rartitioning Wth Dynamic Ind&ing
Cop-Based Implementation
Map-Based Implementation
Dope&ttorBased Implementation
Dynamicdrtitioning Summary

Raramtypes

26
26
27
28

31
32
34
35
35
36
37
38
40
41
44
47
49
51
51
52
53
54
56
58
60
61
64
66
67



3:3.4.1.
3:3.4.2.

3:3.5.
3:4.
3:4.1.

3:4.1.1.
3:4.1.2.

3:4.2.

4:
4:1.
4:2.
4:3.
4:4,
4:5,
4:6.
4:7.
4:7.1.
4:7.2.
4:8.

5:1.

5:1.1.
5:1.2.
5:1.3.
5:1.4.
5:2.

5:2.1.
5:2.2.

Strongyping
Thed&amtype Mechanism

Sample Program

Refining Other Languages
Toward Refined Lisp
Property Lists
Enironments

Refining Explicitlydtallel Languages

Compilation Of Refined Languages
Owervien
A: Leical Analysis
B: Syntax Analysis
C: Intermediate Code Generation
D: Fiv Analysis
E: Concurrep®etection
F: Procesaékaging
Deterministic ProcesscRaging
Non-Deterministic Procesglaging

G: diget Language Code Generation

Concurrency Detection
Terminology And Notation
Intermediateofn
\ariables
Flav Analysis Brminology
Rgions
The Sequential Rules
D-U Chaining

Killed Definitions

67
68
69
73
74
75
75
77

81
82
83
84
84
85
88
88
89
90
91

93
94
94
99
100
102
104
104
105

-ix-



5:2.3.
5:3.
5:3.1.
5:3.2.
5:4.

6:1.
6:2.
6:2.1.

6:2.1.1.
6:2.1.2.

6:2.2.

6:2.2.1.
6:2.2.2.

6:3.
6:3.1.

6:3.1.1.
6:3.1.2.
6:3.1.3.
6:3.1.4.

6:3.2.
6:4.

7:1.
7:1.1.
7:1.2.

7:1.2.1.
7:1.2.2.

Synthesis 105
Thedallel Rules 106
To Expose Brallelism 106
To Detect Races 106
Summary 107
Computer Architecture 109
SISD 110
SIMD 112
\ariations On SIMD Machines 113
Array Processor 113
\éctor Processor 114
Optimization/Brallelization Concerns 114
Data Layout 114
Equialence Of Instruction Streams 114
MIMD 117
\ariations On MIMD Machines 117

Dynamically-Scheduled Shared-Memory MIMD 118

Hypercube (Non-Shared-Memory MIMD) 119
VLIW 120
Dataflar 121
Optimization/Brallelization Concerns 122
Systolic Arrays And Pipelines 122
Loop Parallelization 125
Types Of Loops 126

D-U Coupling Of Iterations 127

Killed Definitions 127

Re-binding Names 128

Dimensional Promotion 130



7:1.2.3.
7:1.3.
7:1.3.1.
7:1.3.2.
7:1.4.
7:2.
7:2.1.
7:2.1.1.
7:2.1.2.
7:2.1.3.
7:2.14.
7:2.15.
7:2.2.
7:3.
7:3.1.
7:3.2.

8:1.
8:1.1.
8:1.2.
8:1.2.1.
8:1.2.1.1.
8:1.2.1.2.
8:1.2.2.
8:1.2.3.
8:2.

Associatie Reduction

Loop Control Dependgnc
Pipelining

Control Precomputation
Hybrid/Nested Loops
RPackaging €chniques
Maximum Looparallelism-Wdth
Dataype Constraints

D-U Range Propipn

Array IndeConstraint
Conditional Control Constraint
Arithmetic Range Proaign
Idealdallelism-Wdth

A Complete Example
Conentional Optimization

Rarallelization

Irr egular Code Rarallelization
Process-#tkaging Rules
Rckage ¥lidity

Rckage Choice

Execution Cost Of Code
Instruction Exution Tme

Ercutions Per Instruction

Fundamental Bounds Catkage Size

Rirallelism-Wdth Adjustment

An Example: RC Quicksort

Summary And Conclusions

-Xi-

131
133
134
135
139
139
140
141
141
142
142
143
143
146
147
148

153
153
154
155
155
156
156
159
160
162

173



-Xii-

Bibliography 175



2:1:
3:1:
3:2:
3:3:
3:4:
3:5:
4:1:
5:1:
6:1:
6:2:
6:3:
6:4:
7:1:
8:1:
8:2:
8:3:
8:4:

Table Of Figures

“Family Tree” Of Languagesat Parallel Machines
Non-Linear Staticatitioning Using Thunks
Non-Linear Staticdtitioning Using Booleans
Non-Linear Dynamicdetitioning By Copying
Non-Linear Dynamicdrtitioning By Mapping
Discontiguous LineamRitioning By Dope ¥ctor
Owerview Of Refined Language Compiler ganization
Control Flev For Concurreng Detection Example
SISD Architecture

SIMD Architecture

MIMD Architecture

Pipeline/Systolic Architecture

An Incorrect Iteration Decider

Control-Flav Graph Of RC Quicksort

“Easy” Rarallelization Of RC Quicksort

Better Brallelization Of RC Quicksort

“Optimal” MIMD-ization Of RC Quicksort

-Xiii-

10
48
50
61
62
65
83
98
111
112
117
123
134
164
168
170
171



-Xiv-

3:1:
3:2:
3:3:
5:1:
5:2:
71
7:2:
7:3:
7:4:
7:5:
7:6:
77

Table Of Listings

C Quicksort

RC Quicksort

“Clever” RC Quicksort

C Code &t Concurreng Detection Example
Tuple Code Br Concurreng Detection Example
C Loop Wth Control Dependence

Listing 7:1 Using Control Precomputation
An “Inherently Sequential” C Loop

Listing 7:3 Using Control Precomputation
Looping Example Code

Optimized Looping Example Code

Parallelized Looping Example Code

70
72
73
95

135
136
137
138
146
147
151



This page is intentionally blank.

_XV_



-XVi-

Intr oduction

Programming a parallel computer in aqpkcitly-parallel language is a di€ult, and a&tremely error
prone, endasr. It would be &r more producte if it were possible to program parallel machines in con-
ventional-looking sequential highvel languages. Pv@us attempts to makthis possible ha been con-
cerned primarily with automatic parallelization of standard FRRN code.

Many of the parallelization techniques whichvhabeen deeloped for this purpose, especially those
for parallelizing loops, areery paverful; constructs such as simple FIHRAN DO loops can be trans-
formed into nearly ideal parallel code foryasf a number of machine types. \Wever, the total amount of
parallelism desied from typical FORRAN code is not stitient to fully utilize the pwer of some
adwanced parallel computers currentlyadable and will be grossly indidient for the ngt generation of
parallel machines. Results using eentional sequential languages other than FR¥N have been een
more disappointing, in terms of the amount of useful parallelism found; virtually no parallelizing compilers
have been bilt for other languages.

The refined-language methodology is a comprekiersgdproach twward dramatically increasing the
amount of useful parallelism which will be automatically dedi from typical sequentially control-struc-
tured code. Because the methodology deals directly with the causes of parallelization ailahessif is
far less sensite to the choice of base language: Ada, C, FRA&N, Lisp, Rascal, Prolog, etc. Iraét, the
C programming language, which is well-knmoto be nearly undecipherable usingwamtional paralleliza-
tion analysis, as the first language to which the methodologg applied, and with remarkable success.

1. Refined Languages

The refined-language approactgins with a comentional HLL (High-Level Language) which has
been stripped of its support for thepécit specification of parallelx@cution with intefprocess communi-
cation and synchronization. It is impossible for a programmer to write a race condition in such a language
— either deliberately or & more lilely) by accident.

Since the definition of “race condition” has become seina fuzzy it is important to define it as it
is used in this paper: a race condition occurs wieereontention for a named object is neitheplieitly
nor implicitly resohed in the program. In otheronds, if two or more sgments of a program attempt to
obtain access to the same resource (e.g., try to write to the same memory location), unless the program
specifies which ggnent taks precedence, the program embodies a race. Sequentially control-structured
code orders all operations in the program, hence it insures that there will be no races. It doesvest, ho
insure that the same answer will be computeshyetime a program is recompiled and run with the same
input — data-dependent computatioralures such as roundfqgiroblems caused by re-ordering computa-
tions (without violating the ordering of accesses tg amgle resource) are not race conditions and



-17-

certainly may occur within code generated from a sequential program. These data-depéoden{dis-
cussed in section 7:1.2.3) are not as troublesome as racey-arehr easier to dely since the do not
become more comptein proportion to the parallelism-width of thedat machine, as races do. In sum-
mary, by disallaving explicit parallelism, we insure delgability.

The refined-language designemxnexamines the remaining constructs, which include most of the
constructs of the base language, to identify particular constructs which deterandllyzing compiler
from discaovering precisely which data are accessed by what code in velyatThis data access informa-
tion guides the compiler in preserving correctness in automatic parallelization; imprecision forces the com-
piler to preserg correctness of code by not transforming it —vileg it sequential. Therefore, yaron-
structs which blur the compilerunderstanding must be either renemb from the language or restricted in
their usage so that theo longer produce this ill &fct. Finally a fav nav constructs may be added to help
compensate for grloss of &pressve paver and/or to aid in specification of precise data-access flo

The resulting language — a refinegksion of the base language — is a dialect of the base language.
A programmer accustomed to the base language will find the refingidivto be ery familiar and easy to
use, if not directly compatible with his/her old code and some of his/her programming habitgy bla-k
efit is that the use of a refined language @sak possible for a tget-machine-dependent, itleanalyzing,
compiler to transform each refined-language program into reasonéibigref race-free, parallel code for
nearly any machine. Betterfefiengy will result from better algorithms,ub each algorithm will xeecute
nearly as well as the match between algorithm and machine permits.

2. Compilation Of Refined Languages

The hulk of the present wrk discusses the refined-language methodology as it applies to compiling
for MIMD * computers, bt only because:

. MIMDs are dificult tamgets for other automatic parallelization techniques, hence, success with a
MIMD target machine clearly demonstrates thfue of the methodology

. As an historical accident, the firstwierefined language compilers are being implemented for
MIMDs, of one flavor or another Test mock-ups of the compilation techniques discussed in the
present wrk were lilt as fragments of an RC (Refined C) compilegééed for a machine which is
a dynamically-scheduled MIMD with a small VLIW multiprocessor at each ncal€dé] [DiK85].

The first complete RC compiler [Ste86] isgated for the IBM RP3 [PfB85], which is also a MIMD.

At its heart, the refined-language methodology incorporates the understanding that precise static anal-
ysis of data access fois the ley to transformability — particularly transformation intdigient taget-
machine-dependent parallel code. Since a refined-language progrgpadted to undgo transformation,

and since much more information igadable in a refined-language programgtting code to anMIMD,

SIMD, VLIW, vector/array pipelined, systolic, etc. machine is tedious, $traightforvard. (In fact, since

1. Detailed discussion of parallel supercomputer architectures appears in Chapter 6.



-18-

program transformability for ceentional code optimization is also enhanced, a refined-language program
can often be compiled into morefiefent code for a sequential computer than can be generated from the

corresponding base-language program.)

In the refined-language methodologyprogram is not seen as representing a unixgpeutable for
mulation, lut, rather as representing a tg class of allwable eecutable formulations. @&n that a
refined-language progranxmicitly contains data access Wloinformation relgant to parallelization, the
portion of this information needed for a particular machine is eadilgated by coventional flav analysis

techniques and can be applied to generatefaieet (parallel) formulation for that machine.

Although preiously proposed techniques for compiling base-language code (most notably FOR-
TRAN) for various parallel machines could be used for refined language compilation, the refined-language
methodology includes a non-deterministic approach to parallel code generation (henceforth called “process
packaging”) for arious types of tget machine. This approach is consistent with the idea that a refined
language program specifies rggpossible parallelseecutable codings, and that the generated code should
be the best of the alternas for the particular tget machine. Indeed, the recognition that comple
machine dependencies dominate the generationfiofeet parallel code is the fundamental reason that
refined languages attempt to raradhis responsibility from the programmet is better to su€r the cre-
ation of a compbe compiler once (per machine) than tovdarery programmer stdr in creating eery

application program.

3. Programming Support

It has often been said that the beal/wo write a piece of code is to modify similar code whies w

written earlier This poses t@ problems: hw is code reused and\Wwaan it be modified or impved?

3.1. Reuse Of Existing Code

Reuse of code modules is not practical unless the modules are written in the same language being
used to write the mecode. Applied to most languages, the refined-language methodology wélsuek
direct reuse impossibleprbatim, a base-language program is not necessarily semantically or syntactically

valid as a program in the corresponding refined-language.

To solwe this problem, a sof@ave tool is created to ceert base-language programs into their refined



-19-

language equivalenfsThis tool, generically called PREFINEperforms analysisery similar to that per
formed by a compiler attempting to generate parallelized code from a base-language program. Rather than
generating parallel code, iathers information rel@nt to paralellization and uses this to create arvaqui

lent program in the corresponding refined language.

For example, to parallelize subroutinevatations, the compiler must be able to determine the data
accesses made by called subroutineswésder, these subroutines may be in separate compilation modules
within other files. PREFINE performs the (reletly expensve) required analysisver all modules of the
program to determine the data-accessifloThe refined-language program it generates contaipcé

specification of the data accessflo

A refined language compiler will find no more and no less toxbeuted in parallel within a PRE-
FINEd program than wuld a similar parallelizing compiler analyzing the base-languaggon of the pro-
gram — lut it will do so using only localized, relaéily inexpensve, flov-analysis. This conceptually
small diference not only mads re-use of old code practicalitlmales separate compilation of code mod-
ules feasibld— whereas the analysis necessary when using\@otional-language programowld tradi-

tionally require the entire program to beamined wheneer ary module vas recompiled.

3.2. Modification Of Code

The adwantage of using a refined language is not merely #pnsve intermodule analysis is con-
verted into ingpensve localized analysis. A refined languagevites constructs which permit specifica-
tion of data access floinformation bgond that which could h& been determined from a cemtional

program, rgardless of the amount offeft invested in analysis.

As an @ample, consider the quicksort algorithm in a typical base-languagion (see section

3:3.5). The major source of parallelism for nyaif not most, machines is the parallzkeution of the tw

2. Since some base-language constructs are veni the corresponding refined language,
mechanical translation is notwalys feasible. & most languages, the occurrence of con-
structs which hae no direct equalent is \ery infrequent and the translation program can sim-
ply flag each such construct so that the programmer maiteét appropriately

3. There is a dferent \ersion of PRerINE for each base language.

4. A very few tamget architectures, such as some VLIW machines, may require code for the entire
program to be generated as an gnéted whole . . . thereby making separate compilation
impossible despite thadt that the analysis can be performed on a single module at a time.

5. Work on programming efironments, such as [CoK86] [AIB86], has recentlyaleped the
theory by which the analysis may be performed in a similar incremeastsibh — preided
that each program is written and modified using only the toolgriated into the efironment.
These tools collect essentially the same information that can be dirquthssed in a refined-
language program,ub they maintain it in a compilation database which the user cannot
directly access.



-20-

recursve calls. Havever, as quicksort appears in most eentional programs, it is impossible for the com-
piler to determine that the bawecursie calls operate on disjoint portions of the array being sorted. In a
refined language, the programmer capress thisdct directly — and the compiler can confirm that the

programmer s right before deciding to generate code whigbkes the tw calls in parallel.

If the obvious generalization of this problem iswied as the compiler sees it, it becomes clear that
the parallelizing compiler knows where it has only approximate data-accessftomation and knas
roughly what the penalty is for the imprecision, in terms of loss of parallelism for et taachine. A
software tool, generically called REFLExwill make use of this kneledge to prompt the programmer for
more precise information to reselthe most costly ambiguities. The information the programmer supplies
will become an intgral part of the program. It is irgeated not just in that it appears in the same fiie, b

also in that it reads as part of the program with meaning and purpose whicluant ia that conte.

Together with PREFINE, REFLEX will all@ old code to be reused and also to be systematically
improved. Data-access flois key not only to the compiles’ understanding of the codeytlalso to the pro-
grammers understanding: each impament not only mads the program ruraster but males it easier for
a human to understand. It is not entirely by coincidence thay mbthe refined-language constructs

closely resemble thoseweonstructs proposed in the name of safevengineering and sofane reliabil-

ity.

4. Owverview Of This Document

As we hae indicated, the refined language methodology is not about only one aspect of the problem

of programming parallel computergjtlis a complete and systematicwief the entire task. It is cue-

nient in this presentation, Wever, to partition the material into twparts.

In the first part (Chapters 2 and 3) of the curreotkwthe programming language design issues are

explored and seeral xamples of refined languages areegi. Chapter 2 compares tharious alternatie

approaches to the programming of parallel computers and discusses the relationships between them.

Chapter 3, the process of designing a refinedion of a language is discussed in detail, widngles
from RF and RC (refined FORAN and C).

The concept of and rationale for refined languages is entirelyalthough may have recognized

the problems and the constructs used in solving them hadyerabeases, been proposed by others for

6.  There will be diferent \ersions of RerLEX, one for each refined language on each machine.
Although the basic design of RErLEX is well understood, it has not yet been implemented.

In



-21-

completely diferent reasons. Data accessvfla nev model of computation, underlies and raates these

refinements.

A scheme for compilation of refined-language programs irficiezit code for MIMDs, SIMDs,
VLIWSs, and mag other classes of parallel machine igegi in the second part (Chapters 4 through 8).
Chapter 4 gies an werview of the complete compilation process. Chapter 5 outlines the principles of con-
curreng detection, the machine-independent portion of automatic parallelization. In Chapter 6, as an intro-
duction to machine-dependent parallelization concerns, we preseveéraies of parallel computer archi-
tecture “as seen by” a parallelizing compil&hapters 7 and 8 discuss machine-dependent parallelization

techniques based, respeety, on loops and irgular code.

While mary of the compilation techniques discussed wereldped by others, the techniques eper
ating on irrgular code are ne as is the statement of theganization of the entire process. The formula-
tion of the compilation analysis using the terminology ofvemtional (uniprocessasriented) optimization

is also unusual, and we belemaly obserations gven in the discussion are unique in this cante

Chapter 9 summarizes the conttibns of the refined-language approach to compiling for parallel

supercomputers. 8eral directions for further research are also discussed.



-22-

Languages
For Parallel Computers

There hae been mandifferent approaches to programming parallel computers. The reason is sim-
ply that the goals of these techniques are not the same — which is gldbendr are mandifferent lan-
guages for corentional machines. In the case of refined languages, our primary goal is to dhtiint ef
speedup inxaecution of programs through proper use of machine parallelism. This is nof forsaam-
ple, that refined languages could not be used to program machines whicly parpleelism only in sup-
port of fault-tolerance or tward distrituting control and sensing operations in real-time. Ratier
acknavledges that the fundamental tradésadre optimized for obtaining fefient speedup through paral-

lelism, and that other kinds of application may be betteesdoy diferent optimizations.

Therefore, in considering competing approaches, we consider only those approaches vehich ha

sought the same goal.

1. Speedup-Oriented Languages

Rather than considering each widual speedup-oriented language which has been proposed for pro-
gramming parallel computers as a separate approach, we will group similar languages together and describe
the properties of these groupso male the interrelationships of these groups cleares useful to con-
sider the “Amily tree” of concepts used in languages for programming parallel computers, as illustrated by

the folloving graph:



-10-

sequential
program
with runtime
microparallelism

N

multiple dusty deck with
B: sequential F: unrestricted
programs side efects
: refined languages
sequential G: fuhct|onal I: annotated
program no side dects side efects
C:| with low-level
explicit
parallelism single assignment
H: restricted
side efects
sequential
non-sequential program
D: control based on E with data
process/eent/ and control
message explicit
parallelism

Figure 2:1: “Family Tree” Of Languages or Parallel Machines

In the abwe graph, each node represents a group of languages which share a fundamental approach to the

exploitation of parallelism in progranxecution.

In characterizing each group, it is useful to point-out that the groups labeled B, C, D, and E are all
based on direct programmer specification of parallelism, whereas F, G, H, and | (the refined-languages pro-

posed in the presentork) are based on automatic compile-time detection of parallelism in sequential code.



-11-

Group A, the earliest technique used xpleit hardvare parallelism, wolves the use of automatic
run-time detection of parallelism in sequential coder ééample, a Load instruction folleved by an Add
might be accomplished with the lasivfeycles of the Load instruction werlapping the first & cycles of
the Add, if the Add instruction does not use thegitr register of the Load. This is a particularly success-
ful approach in that usable parallelism can be detectgddiess of the source language; unfortunataky
speedup obtained in thisay is nearly alays relatvely small. The computer hardwe does not ve the
ability to examine the entire code sequence simultanephslyce, it can only parallelizeezution of non-

interfering instructions within a small windoon the &ecution stream.

Assuming that the machine is being programmed using an HLL, the easiest code sequence to gener
ate would usually be one in which nearly all operations areelinty sequential re-use of theigigters. ©
help insure that someverlap will be possible, compilers for microparallel machine® hang performed a
few simple optimizations which locally re-arrange instructions to permit greattap in eecution
[CoS70]. These optimizations closely resemble those used more recently to fill pipeline delay slots on
RISC machines [Gro83]xeept that the compiler for a RISC processor may need to insert null “padding”

operations.

1.1. Explicit Specification Of Rarallelism

It is quite olvious that, for gample, computing the trajectories of ten independent missiles can be
sped-up by at least adtor of ten using parallelism which seems to be igfiiein the specification of the
problem: instead of computing the trajectory for each missile in sequence on a single machine, all ten can
be computed simultaneously by computing one trajectory on each of ten separate processors. Programming
techniques based on the use xfliit parallelism generally embrace the concept that, as with the trajec-
tory problem just gien, most problems kia a natural parallel decomposition — often called the “maxi-
mally parallel” form. Groups B, C, D, and E f@if only in the features incorporated in the languages to

permit specification of this parallelism.

1.1.1. B: Multiple Sequential Pograms

Perhaps the easiestpdicit-parallelism technique to support is the use of multiple sequential pro-
grams. Vpically, programs can communicate with each other only through the file systethishis suf-
cient for parallelizations lé& that described alse. Of course, the cost of frequent communication or syn-

chronization is gry high — each process must be rekli lage and shouldxecute independently of its



-12-

siblings, otherwise these costs will dominate the prograxe’cution time.

Good eamples of systems whickx@oit this approach wuld include the mancommercial micro-
computers and minicomputers which support frora tev about a dozen processors: the Discp multi-

microprocessoithe dual-processor Prime and Gould machines, the DBCW/S network, etc.

1.1.2. C: Law-Level Explicit Parallelism

The high communication and synchronizatioernead of technique B medk only \ery lage-grain
parallelism useful. A number of sequential language® leen modified to pvide relatvely low-over
head primitves for these purposes, thereby permitting use of-direen parallelism. Primities, often in
the form of hiilt-in functions, usually include simple semaphore operationsyrgfiak and join/vait, and
some vay to establish communication between processes (memory-mapping commands, simple message
buffers, pipes, or so@ts). These primities operate at aew low-level, making the correct specification of
a comple parallel &ecution stream a time consuming and highly eprone programming task. A small
error in the use of the primies will often cause a race condition or deadlock — thegtghg of which is

an art fev have mastered.

Good eamples of this approach include the BBN Uniform Programming System [Hof79],sIBM’
EPEX [Nor86], Pisces 1 and 2 [Pra85] [Pra86], éolsnS86], The érce [Jor87], and seral parallel

computer ersions of Ber&ley UNIX’ (such as that of the Sequent Balance [Ost85]).

1.1.3. D: Non-Sequential Contol

Since the ®pression of parallelism is thekproblem, a number of approachesénaeen deesloped
from high-level formalisms (such as [Dij75]) for describing the paralledomtion of code. Probably the
best knavn such formalism language is Hoar€SP [Hoa78] [DeS86], which abstracts the description of
parallel eecution structure to a high enoughlideso that it is relately straightforvard to use. Other well-

known examples include OCCAM [Inm84] and LIND[Gel86].

A basic limitation of this approach is that it specifies so much that iesniakxtremely dificult, if
not impossible, for a compiler to generate a process structure other than that represented by the program.
For example, most programs written to use message passing cannotvbeembinto forms which auld

have good gecution eficiency on a ector processoror on ag other machine which cannotfiefently

7. UNIX is a trademark of A&T Bell Labs.



13-

simulate message passing. Programmifigiefioy is good once the programmer éfiliar with the paral-
lelism model, bt a change in the underlying hame can easily bring programmindiefencgy to zero.
Reasonablexecution eficiency depends critically on achilg a close match between the programmer’
code and the computsrhardvare — although the language yides eficient ways of specifying details,

the compiler cannot insulate the programmer fromirtgato specify them for the particular machine.

1.1.4. E: Data And Contmol Parallelism

Instead of stressing just the model of parallelism as in group D, this approach stresses modeling of
the entire machine gimonment. or example, it is at least as @idult to decide where data is to be placed
in a parallel machine with multiple local memories as it is gawize the parallelism of the control struc-

ture.

Actus [Per79] is one language which permits such specifications:

var a: array[1:4, 1..5] of integer;

means that the array a is to be arranged in memory so that parallel data references can occur across the first
index of a. In other wrds, “the parallel dots indicate the indehich is . . . spread across the processors in

an array processor or stored contiguously ircar processor” [Per79].

Actus also incorporates mechanisms for specification of enabledidrs, inde ranges, andarious
vector functions which are modeled after the structure of arrayetdrvnachines. Languages supporting
similar (vectororiented) constructs include Glypnir [LaL75]arllel Rascal [Ree84], &ttor C [LiS85]
[Mac85], Rarallel C [KuS85], Concurrent C [GeR85], and, to somieet, ANSI FORRAN 8x.

There are quite afesuch languages. oF much the same reason that modern computers still bother

to define an assembly language, parallel supercomputers tend tplicidyeparallel languages.

PIE [SeR85] preides a softwre deelopment evironment with similar features.

1.2. Sequential Contol Structures

Since the starting point in using a sequential language for programming parallel machines is a
sequential program, and since ngliit parallelism ivocation or synchronization constructdase in a
sequential language, it is naalily impossible for the pgrammer to write aace condition in suta lan-

guage. If the compiler which transforms the code into a parallel form uses only correctness-preserving



-14-

transformations, the resulting parallel program will be free of race conditions: the programmer is guaran-
teed that the parallel code will produce the same result as the sequential program — hence, the program

will be deluggable.

Also in common to the arious \ersions of the sequential language approach isdtiethiat the
source program isxeremely portable, both across a widariety of parallel machines with &éfent effi-
ciency-critical features (ECF<) and across most single-processor machines, with theiows ECFs. The
compiler or at least some program which isvays part of the compilation process (e.g. post-processor
assembleretc.), carries the hea burden of proper utilization of the gt machines ECFs. Since the
compiler is responsible for choice of synchronization method, etc., it can easily generate the type most
appropriate for the machine — or at least it can consistently generateacattesér to the ideal form than
a human normally wuld® This is not because a highly skilled programmer couldio’ better but because
few programmers are didiently skillful and \ery few of them can dbrd to spend the time needed to hand-

optimize &ery piece of code tlyewrite.

Many different sequential languagesvhabeen proposed for programming parallel computers. The
most significant feature of each of these sequential languages is, not surpiisagheasures it empie

toward enabling a compiler to detect operations which can be saéslyted in parallel.

1.2.1. A Classification Scheme

In order to mak objectve comparison of theavious sequential language approaches possible, we
introduce a n& classification scheme for sequential languages which are intended as input to coptcurrenc
detecting compilers. The classification scheme is based oratfseimvwhich side-&fcts may bexpressed
in the language, since imprecision in analysis of sifeetfis the fundamental limit on a compiteability
to transform a program into an appropriate parallel form. The structure of fEdisefiso defines the type
of flow analysis which will be needed to support this transformation. This is easiest to understand by first

explaining what flov analysis for concurregaletection must do.

8. An ECF is a feature of the gat machine whose consideration is critical in obtaining good
execution eficiengy. For example, the number and kind ofgisters in a processor is usually
an ECF The kind of parallelism which is mostfifiently used by a machine is an ECh
general, ay feature whose #€ient utilization requires machine-dependent code is an ECF

9.  Notice here that we are talking about the cede’m, not the appropriateness of the algorithm
for the gven machine. Current compiler technologyvides only minor adjustment of algo-
rithms to better match hardwne — major algorithm changes remain the progransmespon-
sibility.



-15-

A side-efect is an gecution-time binding of aalue to a name. At runtimeales are manipulated
by their association with names. In order to safely parallelize a program, a compiler must be able to insure
that the samealues are used in each parallelized computation as in the corresponding sequential computa-
tion. Therefore, for a compiler to generate a correct parallelization, the compiler must be able to fully

understand he each side-é¢ct afects each name.

On the surce, this seems simple enough because most $aitsedire accomplished by theeseu-
tion of assignment statements. But tledue being associated with the name is usually notvahte at
compile time gcept in terms of its relationships to other unknovalues — the & questions are most
often “Is this \alue the same as that one?” and “Is it certain that #hige\cannot be the same as that one?”
guestions which are often fidult or impossible to answerFor a comentional optimizing compiler
answering “maybgrarely carries a lage penaltybut it will often cause a parallelizing compiler to find no

useful parallelism at all.

Even discoering which name is being used can beyxcomple or impossible: consider assignment
through a pointer or to an arrapnable subscripted by yet anothariable. There are also problems
caused by permitting separate compilation: the sifietethearing code within another module may be con-
cealed from the compiler while it is analyzing the code which uses the module . . . what the compiler

doesnt see can hurt the parallelization a lot.

The four fundamentalariations on the theme of siddegts in sequential languages are: unrestricted

side-efects, no side-&fcts, restricted sidefetts, and annotated siddesfts.

1.2.2. F: Unrestricted Side-Effects

Historically, the first kind of sequential language considered for parallel programming is the kind col-
lectively knovn as FORRAN. Most cowventional languages which were not designed especially for the
purpose of programming parallel machines (nor to help #oalysis in ay way) permit use of uncon-
strained side-éécts®, programs written in them may be analyzed in essentially the sapnasistandard

FORTRAN code.

An olvious benefit of using such a language is that it is possible @ceteting sequential programs
and to obtain some parallelism from them. Unfortunatidg high frequencof occurrence of obscure

side-efects in most corentional languages often neskthe compiles flov analysis ery difficult and/or

10. Some allw for more \arieties of side-éécts, lut none, in their application to parallel
machines, attempt to reduce the creation of sifbstst



-16-

the resulting data access information ifisiéntly precise for a lgle amount of parallelism to be detected.
For example, consider the follang fragment of code:

afi] :=b;
alk] :=a[j] * c;

Does the second statement use thkiey computed in the first? Does the second statement kill the
value of a[i]? The answers to these questions depend on being able to determine if either (or both) of
a[j] or alk] could be an alias for a[i]. This, in turn, depends on kno wing the relationships between i,

j, and k— but i, j, and k may have relationships which are:

. able to be determined at compile-time only by performing flow analysis on the pugram as a
whole, rather than indidually on smaller rgions of the program (forxample, this wuld be the
case if i, j, or k were assigned the alue of an epression which was partly computed by another
function) — the dbrt taken in performing flow analysis gras quickly as the size of thegien
involved increases, hence the analysis becoxtesneely &pensive; or

. theoeetically not able to be determinediin the pogram at compile-time (fon@ample, if i, j, ork’ s
value is partly devied from input to the program) — whicloes not necessarily imply that a depen-
dency ists (it may for example, be impossible to determine by compile-time analysis that the tw
recursve calls in quiksort operate on unrelated portions of the array being sorted, yet, this is the case
[DiK85a])).

In either of these situations, the comp#effon analysis is forced to settle for answering both questions

“maybe’ Any other assumption, carried through into automatic parallelization, could result in a race con-

dition if the compilers guess a&s wrong.

Fortunately such situations do not occuery often in FORRAN programs, which are remarkably
static compared to typical programs in other sequential languagesxample, FORRAN doesnt pro-
vide pointers, recursion, nor dynamic memory allocation. Tdds tombined with theverall simplicity
of the languagé and the multitude ofxésting application programs written in FORAN, has made the

application of “dusty-deck” techniques to otheramtional languagesevy rare.

Other unrestricted sidefett languages, especially languageg IR, for which typical programs
contain a multitude of pointer references and other constructs which cause these analysis problems, are par

allelized with much poorer consistgnthian FORRAN.

11. This refers mostly to ANSI FORRAN 66, hut eren ANSI FOR'RAN 77 is simpler than most
languages, and so will be ANSI FORAN 8x.



-17-

The major gecution eficiency benefit to using a ceentional language is that so much is\kno
about optimization of sequential code for these languages Yeatjfdittle parallelism is found, thexecu-

tion eficiengy of eat process (considered inddually) is likely to be ery good.

The sections 2:1.2.1, 2:1.2.2, 2:1.2.3, and 2:1.2.4 briefly outline the approadmebytaome of the

more actie research groups in the field of “dusty deck” parallelization.

1.2.2.1. RARAPHRASE

PARAPHRASE [KuM72] [KuS84] is probably the best-kiwa program for coverting sequential pro-
grams into parallel code. Itag probably the first such program and it continues to be uagroAlong the
way, it has motiated maw other parallelizing compilers, such as PFC [AIK82], the KAP [KAI85] transla-
tors, and [AlI86].

The analysis and transformation schemes useddpPHRASEare primarily (though notxelusively)
intended for numbecrunching FORRAN programs and ectororiented taget machines. The array of
transformations performed definitely places it among the most sophisticated compileraetipARA-
PHRASEIS not perfect:

. No extraordinary attempts are made to resahliasing ambiguities arising from unconstrained side-
effects, be the intra- or inter compilation unit. If a subprogram call (to a non-intrinsic routine) is

made from within a parallelizable construetRAPHRASE fails to detect the parallelism. Ongoing
research may soon correct this deficiefigan86].

. PARAPHRASE finds DO loops and performs dependence analysis on loop bodies atethef Isimple
FORTRAN statements. This mek it impossible folPARAPHRASE to consider lav-level parallel
machine ECFs (such asgister allocation, etc.). d¥ this reason, it wuld be &tremely dificult to
adaptPARAPHRASEtO generate good code for machines whickieheaty low-level ECFs — such as
VLIWSs and e&en some &ctor machines, as discussed in Chapter 6.

An improved \ersion ofPARAPHRASE, Mini-KAP/AF [KAIB5], is currently available commercially

1.2.2.2. BJLLDOG

The VLIW (Very Long Instruction \Wrd) machine [Fis84] [FIE84], is either ary wide microcoded
SISD or a ery static MIMD, depending on twoone chooses to weit. In ary case, it is a machine
plagued by ery strong dependence oary low-level parallel machine ECFs. TiseLLDOG [EII85] com-

piler was deeloped as an inggal part of a VLIW machine design, to eent programs written in a small



-18-

FORTRAN subset into highly parallel code for this architecture.

BULLDOG uses numerous sophisticated program transformations, most of thesnycledapted from
previous work done in microcode compaction. It is among the dencurreng detecting compilers which
do not resort to pattern matching faykransformations — it is completely analytic (and non-deterministic
in its choice of parallelization). Most significant of @ijLLDOG embodies a ery paverful technique for

resolving the tw kinds of aliasing problems described in the introduction to section 2:1.2.2.
The array subscript problem cited aba@an be restated as the pair of questions:
. Is it possible thati - j = 07
. Is it possible thati - k = 07
In BULLDOG, each aliasing question is answered bywaating the problem into an equation and trying to

solwe it. This maks compilation sk, but works remarkably well.

When an inequality can be neither salwnor preen to hae no solution, the compiler presents the
inequality to the programmer and permits the programmer to insert assertions, also in the form of equations
or inequalities. Br example, in the case cited algo the programmes’response might be:

ASSERT i <]
ASSERT i<k

which allowvs BULLDOG to sole for the answer to the aliasing question. Most importagdperation of
parallel code based on the assertions is safe, since the assertions aatatezh\at run-time. These asser

tions can safely answeven questions whose answers are theoretically wdinle at compile-time.

The main dificulty in using this approach is that the assertions are often welyitinrelated to the
problem soled by a program. When the compiler prompts the programmer for an assertion, the program-
mer might not immediately kmo the answer nor understand wthat particular question ag askd.

Therefore, the assertions do littleverd making the program easier for a human to understand.

Early work onBULLDOG has beenxpanded to include non-VLIW architectures [Nic85]. Refatio

the handling of side-&dct analysis problems, [All83] presents a similar approach.

1.2.2.3. PDOOL

Programming erironments, such aBTooL [AIB86], attempt to mak intercompilation-unit flav

analysis acceptably fefient. This is accomplished by incrementally collecting andgimgy information



-19-

from separate compilation units asytteze compiled.

While pTOOL does not yet attempt automatic parallelization of sequential (FR¥R) code, it does
provide a set of softare tools with which the delopment of parallel code can be doaerhore diciently
than if it were attempted purely by hand. In principle, there is no reason that an automatically parallelizing
compiler could not be incorporated in a programmingirenment. This verk is currently underay

[Bur84] [BuC86] [CoK86] [TI86].

Integration of intefprocedural analysis is @wm important step in “dusty deck” parallelization tech-
nology. However, once such a compiler has been constructed, it will only be able o @wdvof the to
problems presented in the introduction to section 2:1.2.2 — alone, programmirggnerents preide no
mechanism for the programmer topeess his knwledge of the run-time referencing belwa of the pro-

gram.

1.2.2.4. PREFINE

Independently from the programmingv@onment researchers, we also obedrthat the cost of per
forming intercompilation-unit analysis is nokeessve prowvided that the blk of information need not be
determined arve with each compile. Hagever, like the researchers who produ@dLDoOG, we feel that
this information should be a visible part of the program — useful in helping people, as well as the compiler
understand the program. In order to do thisydser, the great blk of the interprocedural and other data

access information must beveeely reduced.

C-PREFINE(CP) is a program which collects only the data access information needed for congurrenc
detection across compilation units. Whewegi a C program as inputp translates it into aalid refined C
(RC) program, placing interprocedural information in an interface specification file which is included as a
uservisible part of the RC program generated. From this point on, the progratd e maintained as an

RC program, and the ksion ignored.

The RC compilerdiscussed lateractually parallelizes the program. Another saftvtool aids the
programmer in impnang the RC code in much the samaywtheBULLDOG helps impree FOR'RAN

code.

There are sesral major distinctions between this and other approaches. One is that, mokit
“dusty deck” techniques, aevsion ofPREFINEcan be constructed for nearlyyalanguage. (A FORRAN

version is under deelopment.) Another is that the notation used for the wajant ofBULLDOG'S assertions



-20-

in refined languages is directly related to the structure of the program, hence, the ssiimdof a pro-
gram is nearly alays easier for people, as well as compilers, to understand. FerEEINEcompletely

isolates parallelization analysis fromvi¢including dependence) analysis.

1.2.3. Restricted/No Side-Effects

Considered as a group, most, if not all, the compilers which analyze and parallelize sequential lan-

guages permitting unrestricted sidéeefs share the folleing characteristics:

(1) They use comple flow analysis and transformation algorithms, snahwhich execute ery slavly,
and

(2) The solutions to the aliasing problems discussedralaye obtained either not at all or only by the
programmes providing additional information about aliases.

Partly in response to these filiilties, and partly in an attempt tgpeess the concept of dataflgArC84]

execution in a high-kel language, a number of sequential languages with drastically restrictedfedgs-ef

have been designed. It is commonly held that these nearly det#-Ee languages are easier to transform

into parallel code than are languages which permit a ricresty of side-dects.

Relative to (2) abwe, languages which restrict siddeets are completely fefctive. Relatve to (1),

these languages are a moderate success.
Compilers must still perform fle and parallelization analysisybthey are simplified in that:

. programmer names correspond directly to unicalees and

. in most cases, restricted sidéeet languages e such simple structures that transformation into
parallel forms can be accomplished entirely by simple pattern matching [Omo84].

Viewing this from a difierent angle, most of the compilers for restricted sifleeefanguages implemented

thus far completely disigard nearly all ECFs — and the penalty is often great.

It is interesting to note that this is really the connection to the dataflodel. Dataflev machines
have very fav ECFs; eficiency depends mostly on dynamic properties which are inaccessible to the com-

piler. Hence, a “dumb” compiler performs nearly as well as a “smart” one for most datafarhines.

In order for side-éécts to be constrained to aséd which permits use of aewy simple compiler
restricted side-é#ct languages use call-bglue and eery “assignment” statement becomes aplieit
copy operation. It is surprisingly di€ult to mechanically corert call-by-walue into call-by-address (so

that the cost of cgpng values may be eliminated) or to eent explicit copying into pointer references.



-21-

The reason is that, at thery least, cop elimination requires detailed global analysis xaatly the prob-
lem that restricted sidefett languages attempt tead. The “copy problem” is also magnified by thadt

that may restricted side-&ct languages do not pride for compile-time knwledge of data types.

The utility of the diferent programming style imposed by restricting sideet$ is debatableub it
is fair to say that operations such as input and output (singathéistory sensite — i.e. thg are inher
ently side-eflects) are particularlyvekward to &press. Ironicallyalthough restricted sidefe€t languages
allow the compiler to easily generate programs which are free from race conditiomggidghis dificult
— precisely because most dejging practices are based on use of sietsf to monitor a progras’

behaior [Cuwa82].

The major classes of restricted sidieef languages are single-assignment languages and func-

tional and applicative languages.

1.2.3.1. H: Single Assignment Languages

In restricting side-éécts, the restriction which is almostwalys made is that eacname must
uniquely identify a value. In otherords, only a single assignment is alled to each ariable. In this vay,
the alias problem is sokd — because the questions which caused tfieulijy never need be askl. The
only violation of the single assignment rule appears within looping constructs, whemntloedcnew is

used to indicate that a conceptuallywrmeame is in use.

Examples of single assignment languages are Id [ArGE]MES82], Sisal [McS85] [SkG85], and
Blaze [MeV85].

1.2.3.2. G: Functional And Applicative Languages

A purely functional or applicate language goes a step further — it does not permiside-efects.
With no side-dEects, there are, of course, nariables and therefore no names for data. This certainly
insures that there will be no nhame-resolution problems (aliasatsi, dlso demands a dramaticallyfdif

ent programming style.

Examples of this type of language are FP [Bac78] and HOPE [Mo082]. The¥ebban secral
research ébrts tovard reducing the recomputation incurred by the lackaofables, mostly in the area of

applicatve caching [S81]; havever, the single-assignment solution clearly dominates.



-22-

1.2.4. |: Annotated Side-Effects

The topic of this thesis, the refined-language approach [DiK84], is the automatic parallelization tech-
nigue based on the concept of sequential code with annotated feitis-eRelatie to side-dects, the

annotations guarantee that what the compiler gets is what it sees.

The annotation of sidefefcts is based on the specification of precise data access permissions —
arbitrary side-décts can be specifiedubonly proasided that thg are consistent with the access rights

granted to a particulargen of sequential code and the access rights carried by names within that code.

1.2.4.1. Access Flo

The nev concept of data accessulpthe heart of the refined-language approacheiig simple and

has a strong similarity to dataflo

In dataflav, data flevs into computational nodes where it is absorbed anddag¢a are generated —
hence causing the cpproblem discussed ab®. In access flg, permission to access names in certain
ways flavs through computational nodes — access rights are not absorbed andyéimenated. It is this

property which permits refined languagesvoid the coy problem.

In access flw, if access rights to some data structure avilell, e’entually these rights must join
together at another node, since all rights must be coalesced for the program to return these rights to the

operating system (for the program to terminatg)pidal access rights are:

(1) Permission to read,

(2) Permission to write (possibly reading whatsmvritten),

(3) Permission to read and then write (modify),

(4) Permission to allocate (to create space associated wittisting name), and

(5) Permission toxecute.

each node may transmit, mger or partition, the access rights whichwflimto it. Access rights cannot be

created nor destyed.

1.2.4.2. Refined Languages

Access flav graphs are not aewy cowenient representation for a programmer to manipulate — the
large number of arcs and high conneityi even males them wkward to viev — corventional languages

are fir more “user friendly Hence, refined language programs arevagtional language programs which



-23-

are annotated with graccess flov information that could not ke been mechanically obtained, with rea-
sonable dbrt, from the cowmentional language program. In some cases, the informat@midvwhare

required ‘ery expensve analysis to obtain, hence it iwgn eplicitly to save compile time (as in the case

of interprocedural access rights). In other cases, the access rights coulkenmtdradetermined with rea-
sonable precision no mattervihgophisticated the compile-time analysis, hence the programmsight

into the run-time action of the algorithm igpdicitly stated (much as the assertionssta LDOG, but in

terms of partitioning access rights to a data structure rather than in terms of apparently unrelated assertions

involving the \alues of ariables).

Definitions of both R& (refined C) [DiK85a] and RF77 (refined ANSI FORAN 77) [DiS85]
[DiK86] have been presented, and compilers for these languages are welepment. Other languages
soon to be refined includeagtal, Ada, and (with some restrictions and changes imposed) Lisp: alyost an

language can be modified to permit specification of more precise aceegsfdonation.

In refining a language, constructs which obscure the information neededambasing problems
(resulting from the use of global data, pointers, references to portions of a data structure, etc.yvack remo
from the language and replaced by modifiedsions which do not inhibit the analysis. The replacements
can be made to look muchdikhe original constructs and canyide all (or nearly all) of theirgressie

power. All other language constructs remain asytivere.

Since each refined language &y similar to a dusty-dkdanguage, compilation intoféfient paral-
lel code can be identical to compilation of dusty-klgmograms into dicient parallel code. Anof the
compilation techniques of [ilM72] [AIK82] [EII85] [Vei85] [KuS84] [Nic85] [KAIB5] [DiK86] [ScK86],
could be used and the resubhwid be at least as good as, and probably much better than, that obtained from
the dusty-ddc language — because the onlyfdience is that it is natural, in writing a refined-language
program, for the programmer to supply the compiler with precise information which can be used to safely

resole additional aliasing questions.

Of particular concern is a proposed MIMD design which consists of a dynamically-scheduled single-
stage netark [PaK86] interconnecting processor/memory nodes (requirirgeigrain dynamic parallel-
ism) each of which contains some number of specialized RISC processors [DiK85] in a VLIW configura-
tion (requiring ‘ery fine-grain static parallelism). In order to support this architecture, compilation tech-

nigues capable of dealing with a widariety of parallel machine ECFvels hae had to be deloped.

12. The syntax of RC has been slightly altered from that presented in [DiK84] to better conform to
the draft specification of ANSI C. Avised definition of RC appears in section 3:3.



-24-

The result is that:
. Some progress has been madeata specification of»actly what compiler techniques are associ-
ated with arious specific ECFs (as discussed in Chapter 6),

. Some n& parallelization technologyand terminologyhas been deloped, incorporating such con-
cepts as non-deterministic selection of&trparallel code structure (a hidgpruned search for the
best coding, similar to [KrA82] for single-processor computers, is performed), and

. We have been able to describe concurgedetection and parallelism transformation in terms of stan-
dard, uniprocessor optimization-oriented, compiler analysis [CoS70PT8] [AhU77] [AhS86]
[Die84].

Further in much the same ay thatBuLLDOG provides for iteratre improvement of the precision
with which aliasing questions can be setl; a softare tool,REFLEX (currently under deslopment), will
permit refined language programs to be impth The main dferences betweeREFLEX and BULLDOG
are:

. The refined language imprements are in terms of wibus, programmer visible, objects — not
seemingly unrelated equations, and

. REFLEX will not ask the programmer to be more precise abeeire ambiguous reference; rathir
will request clarification only for those aliasing questions which woedilt in lage execution-time
penalties on the tget madine if they remained unanswered.

The refined-language approach attempts toemakry aspect of programming/compiling for parallel

machines more B€ient — except, perhaps, for thefeft the compiler gpends in chosing the best parallel

execution structure.

2. Efficiency

The eficiengy of a programming technique for speedup using parallel computersy othar class
of machine, has mardimensions. In a discussion of programming language design, the meshtrelees

are programming, compilation, angeeution eficiency.

2.1. Programming Efficiency

One aspect, perhaps the most important one in the long run, iitlenef with which the authos

programming time and fefrt are comerted into a properly functioning program.

Programming diciency is, therefore, partly dependent on tixpressve paver of the language. of

example, the ease with which APL can be used to represent operat®nedikr summation mals it



-25-

more eficient for this task than, safFORTRAN (which requires an entire loop as opposed to a single com-
pound APL operation). The tek-length of the APL program is smajleence, the APL progranxlebits
a higher information densityFever ancillary “concepts” need be encoded by the programwigch

implies that the APL ersion can be created both more easily astef

However, good e&pressie paver alone may not be enough. Despite its terseness, it is generally
agreed that APL isb’'the most programmefficient language \en for programs which euld be &r
shorter in APL than in gnother language. In mgincases, APls epressie paver is obtained at the
expense of the clarity with which algorithms may @ressed — algorithms often are re-cast into 'APL
powerful operations\een though conceptually thgerform operations which are quitefdient from those

required. This is the root of AP& reputation as a “write-only langudge.

In parallel computing, as in sequential computing, the magégal language is the language which
best matches the task at hand — there is no reason to assume that one language is best for all kinds of pro-
grams. If the rpressie paver of two languages is roughly equal for aeg application domain, then the
relative ease of understanding and modifying programs in the languages will determine which will lead to
greater programming fétiency.

Consider a gry paverful language whose constructs are all closely tied to deep understanding of the
machine hardware: if the programmer has this kvledge, the language ieny eficient; without it, the pro-
grammer may find himself reduced to essentially zero pradycivhile he struggles to learn the pertinent
details. If the details change, he becomes unprodeiet- and gisting programs may need to be drasti-

cally modified.

A refined language has essentially the saxpeessie paver as its base language. feient refined
languages are tailored to fdifent tasks: refined FORAN senes a diferent application domain from that
of refined C or of refined Lisp. Common to all of them is the abilityxmi@tly specify data-access fip
which adds the poer to easily epress gplicitly-parallel algorithms; yet, the parallel structure of the
resulting code is determined solely by the compilEne programmer need notJygary understanding of
the taget-machine (although such understanding can be applied to create algorithms which are more appro-
priate for the machine, hencaster to gecute). In sum, programmingfieiency using a refined language

is very high and continues to be higrea if the hardwre changes.



-26-

2.2. Compilation Efficiency

Once a program has been written, it is the task of the compiler to genarateable code. The
transformation of typical programs inteezutable code may benry simple or ery compla. If it is sim-
ple, the compiler will perform its task quickiynaking program delopment someghat easier If it is com-
plex, the compiler itself will be more compl@nd more difcult to create; in addition, the progranvde
opment gcle will be extended by long compile times. A particular language is compilatiofidiesit if
equivalent programs written using another notation are more easily translated into an equally bereficial e

cutable form.

Refined-language programs are mordidaift to compile than programs in mamther languages
used for programming parallel computers. Redatio other sequential languageswbeer, refined lan-
guages are, by desigrery cooperatie with compilers which seek precise data-accessifitormation in
support of automatic parallelization. A refined-language compiler is canoply because it is isolating
the user from tget-machine details, hence egiag the class of potential users of parallel machines — a

very worthwhile trade.

2.3. Execution Efficiency

If the execution time of an»ecutable representation is greater than that obtained using another
model, or if the gecution time is similar it the resource requirements Qreaterthen the xecution efi-

cieng is relatively low.

In parallel computing, this is not quite as clear a distinction as it at first seensge This, consider

the folloving code fragment:

IF(A>B*C)THEND =E*F;

. Traditionally, a parallel supercomputer is dedicated to a single program at a time, which implies that
ary hardware with no code assigned to it iasted. In thexample abwe, this suggests that it might
be worthwhile executing E * Fin parallel with A > B * C. Extra wrk is being done in the case
that A > B * Cis FALSE (namel\E * F is needlessly computed). Maver, if there was other
wise idle hardware able to compute E * F, this carries no penalty and, if A > B * Cis TRUE, it
speeds-up the program.

. If the taget parallel computer is multiprogrammed — which is the preferrédomment once paral-
lel hardware becomes relagly inexpensive — hardvare which is not being used by one program
might be used by anotheContinuing the abee line of reasoning,xecution of E * F in parallel



-27-

with A > B * C when this condition happens to be FALSE iasting hardwre that another pro-
gram, or gen another part of the same program, mighthaut to profitable use. The desirability of
this parallelization depends on the probability of A > B * C being TRUE, which has long been
acknavledged as impossible to prediét.
Aside from the discrepagpdetween uniprogramming and multiprogramminiicefngy, if efficient execu-
tion is to be obtained, nearlyery aspect of a parallel gt machine will hae major impact on the code
generated. Latein Chapter 6, we relate maibasic architectural features to specific parallel code struc-
tures and code impvements; for the moment, it is fiafent to point-out thatxecution eficiency depends

on the ability of the compiler to closely match the preferred model for et tavachine in question.

A compilation technique mayfor example, result in ery execution eficient code for a ector
machine, bt very ineficient code for MIMDs. Such a technique is ng¢eution eficient in general, since
it is tied to a taget-machine model, and therefore does not constitute a general solution to the problem of
programming a parallel compute(Commercially such languages may actually lagofred because tkie
malke it more dificult and less profitable for a customer to switch to anotéedars machine, Wt this is

not an attitude to be encouraged.)

The ecution eficiengy of code generated from a refined-language program caxtrieenely high,
since the data-accessvilanformation is readily ailable to the compiler and iRy precise. Restating
this, eecution eficiency of a refined language is a function ofwhavell its compiler models the et

machine — the otheraviables hae been eliminated.

The three dierent kinds of diciency trade of against each other andyen considering just these
few aspects, no methodologyxaels along all dimensions. The refined-language methodology tends to be
implemented with only moderate compilatiodi@éngy because, unlé other approaches, it enables the
user to obtain outstandinglyfiefent execution with just a bit more fefrt invested in the compiles’model

of the taget machine.

13. ltis often suggested that it might be beneficial tovallwogrammer to specify the probability
of taking each conditional branch in the program [CoS70]. In [Fis84]ai wroposed that
each program be compiled twice. The first time, the compiterddhvinsert code to collect sta-
tistics on branching bel®r and then the codeould be &ecuted with usesupplied test data.
The second compile auld use the probabilities determined by the statistics accumulated in
the test recutions. Neither approach hagee met with wide acceptance; guessing that all
branches are roughly equiprobableasmore common.



-28-

Refined Languages

A refined language is a language which permits the programmexpbogly manipulate data access
rights, thereby minimizing ambiguities in analysis for parallelizatioo.cieate a refined language, one

begins with a comentional HLL — nearly apHLL: Ada, C, FORRAN, Pascal, PL/I, etc.

Most comwventional languages supporteif any, explicitly-parallel constructs. If a language sup-
ports constructs which aremicitly parallel and hae no equialent sequential semantics, these constructs
are remoed!* The eclusive use of constructs which\esequential orderings insures that race conditions
and deadlocks cannot be written; what could otherwise be a race condition iedegotompile time by

the sequential ordering.

Next, the remaining constructs areaenined to identify those which obscure the data accesofla
program from a flw-analyzing compiler — in other avds, constructs which malkcompile-time analysis
of side-efects inefectual. These constructs are replaced and/or augmented by constructs with similar syn-
tax which preide essentially the samgpmressie paver, yet do not inhibit the analysis. The “refined” con-
structs accomplish this by piding the programmer with ays to &press the kneledge of data access
flow that he must hee had in order to lwva written a particular program; thelo not require him to think

about his program in a weway and thg do not require him to change his programming style.

There are other “fixs” which could be made to a language so that analysiddvbe more precise,
but only the abee “refinements” are essential to the success of automatic parallelizatioexafple, it is
extremely useful for a compiler to kmoapproximate branch frequencies [McH86]. Constructs could cer
tainly be irvented to permit such specificationsf buch knwledge is of little use in detecting parallelism;
it would, havever, improve the quality of the code in general. Only refinements which clarify the data-
access flow directly impve the ability of a compiler to generate parallel code and, because we wish to

minimize the diferences relate to each base language, we do not impose other changes.

In section 3:1, the problematic constructs in FBRN are discussed in depth. Section 3:2 presents
the definition of RF — refined FORAN. Section 3:3 discusses both the problematic constructs in C and

the definition of RC. In refining FORAN and C, all the techniques needed to refine mostectional

14. Most eplicitly-parallel constructs hee well-defined sequential semanticsor Example, the
vector assignment “A = B * C” has the sequential semantics of “for | = I(B UB DO
BEGIN TI[I] = B[I] * C[l]; All] = T[I] END. " Only parallel constructs lie Spavn/Join cannot
be represented in egaient sequential form.



-32-

languages are displayed; section 3:4 describes thadeitional concerns which arise when either a lan-
guage is based on inherently sequential data structures (such as Lisp) or a language is characterized by its

explicitly-parallel control constructs (such as CSP).

1. Problems In Standard FORTRAN

From the point of vie of automatic parallelism detection, it is ®enient that typical (unrefined)
FORTRAN programs areafr simpler and more static than programs written in most other languages. Pro-
grams are simpler because FIBRAN is a relatiely spartan language — there are not asynuhffierent
ways to say the same thing as in most other languages. Programs are more static in that more information
than usual about the run-time beiwa of a program can be determined at compile-timer. éample, the
amount of data space required by a typical FRRN program is knan at compile time; in most lan-
guages, the ability to perform recwesicalls and to dynamically request chunks of memoryesaleter

mining the run-time size ffctively impossible.

In these respects, FORAN, in ary of its major dialects, is an ideal language for a compiler to ana-
lyze. This fct is &idenced by the multitude of parallelizing compilers for “dusty deck” FRRN
[AIK82] [ElI85] [K uS84] [Nic85] [KAI85] [ScK86] and the lack of parallelizing compilers for almost an

other language.

Since FORRAN contains nolicit parallelism-itvocation or synchronization constructs, it is natu-
rally impossible to write a race condition in the language aedie, a flov-analyzing compiler re-structur
ing code into a parallel form by using only correctness-preserving transformations will be incapable of gen-
erating a race condition. If such a compiler igegi pure ANSI FORRAN code, the programmer is guar
anteed that the parallelized program will produce the same result as the sequential program — the program
will be deluggable. Perhapsven more important, using a compiler with a “back-end” appropriate for each

parallel or sequential machine, the program will be completely portable.

Unfortunately the amount of useful parallelism found by avflanalyzing compilerxamining a typ-
ical (unrefined) FORRAN program is not necessarily all (arem a lage fraction of all) that is present in
the program [KIM72]. This discrepancis caused by certain language constructs which obscure (from the

compiler’s flov analysis) potential parallelism.

A construct which blurs the compilerpicture of which data items might be accessed byparticu-

lar reference will result in the compiler making a “safe” assumptian.efample, in:



-33-

For this and the following examples, assume
that labels 10 and 20 are never referenced,;
they appear only to relate each example to

O o000

the discussion in the text.
10 A=B*C
20 D=E*F

the statements labeled 10 and 20 canxkelged either sequentially or in parallelt bnly in parallel if the
answers to the follging questions are “no”™:
(1) IsBorCanaliasfor D? Is E or F an alias for A?

(2) Are A and D aliases for each other?

If any part of (1) were answered “yésxecuting statements 10 and 20 in parallel could produce an incor
rect result — a write/read race conditioowd eist. If (2) were answered “yé€sexecuting statements 10
and 20 in parallel muld produce unreliable results — a write/write race conditionlevexist.™® If static
analysis cannot answer either (1) or (2), or if either answer is “sometiméethgemly “safe” assumption

is that parallel code should not be generated for statements 10 and 20.

The previous exkample is somg&hat contrved, because it is (usually)vial for a flov-analyzing com-
piler to determine the answers to each of the indicated questiony -ef e “dusty deck” parallelizing
compilers mentioned akie could answer them. Maver, minor \ariations on this>ample will demon-

strate the analysis problems caused by each of th& RAR constructs which must befined.

1.1. Refeences D Global Data (COMMONS)
Suppose that A, B, and C are defined as distimgabies which reside in a COMMON and that the

statement labeled 20 is changed as fedto

10 A=B*C
20 CALL SUBR

Assume further that SUBR is a SUBROUTINE which is defined in a separate file. The questions the com-
piler must answer are essentially the same:

(1) Does SUBR (or ansubprogram woked by SUBR) contain stores into B or C or loads of A?

15. It is interesting to note that, in general, if an answer isaknto be “yes” then a sequential
code optimization is possible.oFexample, if A and D are aliases for each otlstatement 10
is a dead computation and can be eliminated.



-34-

(2) Does SUBR (or ansubprogram woked by SUBR) contain stores into A?

In order for the compiler to generate code which can saksgute statements 10 and 20 in parallel, the

answers to both questions must bewmnado be “nd.

The time compleity of typical flov-analysis techniques used to attempt to answer these questions
forces flav-analysis to be localized to smalbrens of a program (forxample, a SUBROUTINE or FUNC-
TION at a time) — analysis of Iger rgyions would tale an unacceptably long time. Since the lasheple
may require this analysis to be performed on the entire protjrima,compiler vould probably be unable
to answer these questions. This, in turouls force the compiler to makhe “safe” assumption thatery
SUBROUTINE or FUNCTION call mightfedt every variable that appears in yiCOMMON. Sequential

code would result.
A less olvious, ut very similar situation &ists relatve to the use of 1/O channels by subprograms.
An I/O channel number acts éla global griable. Consider:

10  WRITE (6% A
20 CALL SUBR

It is impossible to tell if SUBR uses I/O channel 6 without looking, at éng least, at the code for SUBR.

1.2. Refeences Va Pointers (Call-By-Address)
Let us nov assume that A, B, and C are all defined as distentabies local to the SUBROUTINE in
which the follving code appears:

10 A=B*C
20 CALL SUBR(A, B)

As before, SUBR is assumed to be defined in a separatadtiesiiice we hae already considered the prob-

lem of global data, we will assume that there are no COMMONSs in SUBR. Although FORTRAN does not
explicitly support pointes, it does use call-by-address in passiggiawents to FUNCTIONs and SUBROU-

TINEs. The compiler must ne find answers to:

(1) Does SUBR (or ansubprogram woked by SUBR) store into B or load from A?

16. Recently substantial acdinces hee been made weard limiting the scope of analysis by con-
structing “programming esironments” which incrementally collect the needed information.
Good eamples of this approach are [Bur84] [BuC86] [CoK86{I§6], which were briefly
discussed in Chapter 2. ever, this mechanism alone is not capable of solving the problems
described in section 3:1.3.



-35-

(2) Does SUBR (or ansubprogram woked by SUBR) store into A?

which, of course, wuld normally be gry expensve for the compiler to answer

1.3. Refeences B Indexed Data Structures

Let us return to our originakample, agin, slightly modified:

IMPLICIT INTEGER A-Z
DIMENSION G(100)

10  G(A) = G(B) * G(C)

20 G(D) = G(E) * G(F)

The questions to be answered arerno
(1) Is G(B) or G(C) the same element as G(D)? Is G(E) or G(F) the same element as G(A)?
(2) Is G(A) the same element as G(D)?

However, these questions are much harder to answefact, answering them may require arbitrarily com-

plex theorem praeing or may be impossible, as in the case whei@wevs READ for one of th@wnables.

If the value of ay of A, B, C, D, E, and F isfatted by a parameter entering the SUBROUTINE
which contains the abe code, then the correspondingjuament to eery CALL of that SUBROUTINE
must be gamined. This may be theoretically possiblet ki certainly is not practical if it must be repeated

each time a module is modified (therebysta program deelopment and delgging).

Since it can beery difficult to determine which element(s) of a data structure can be accessed by an
indexed reference, it is often necessary to assume that such a reference poteietitdagf (every) ele-

ment of the array

Several attempts ha been made to reselthis problem by hdng the programmer insert assertions,

as described in section 2:1.2.2.2.

The RF equialent to assertions (the concept of partitioning, in section 3:2.3) is biatlef and
safe, lnt, most importantlyit makes sense in terms okmgressing an algorithm; the only information the
programmer needs txgress is information which he mustveaknavn in order to hee understood the

algorithm.



-36-

2. The FORTRAN Refinements

In each of the situations described alahe compiles inability to resole exactly which data items
might be accessed by a particular reference must result in the “safe” assumption — that all possibly
touched items are not available across such a reference — which typically forces the generation of sequen-
tial code. If we can enable the programmer to specify what really happens in these wasgsetmdence
constraints need be artificially imposed by the compdled less of the generated code will be forced to be

sequential.

Each refinement can be wied as preiding the programmer with a language construct which, while
being intuitve and natural to the programmalions him to preide exactly the &tra information the com-

piler needs.

RF (Refined FORRAN), looks and “feels” lie FOR'RAN, but, unlike the lattercan be compiled
into reasonably dicient race-free code for grkind of machine, parallel or sequential (assuming that a

compiler has been constructed for the machine in question).

In the present wrk, refinements are discussed retatio ANSI FORRAN 77, since it is &ry simi-

lar to most FORRAN dialects in popular use, yet its specification is readiyiable.

Because the ANSI FORRAN 8x specification includesector operations, it might seem, at first, that
refining ANSI FOR'RAN 77 is attempting to “re-irent the wheél. But, although ector notation causes
no nev problems for flav analysis and concurrendetection, neither does it sehary old ones. ¥ctor
operations are helpful in generating good code for some parallel computedls, tiot mak generation of

good code significantly easier for mosgetrmachines.

Clearly, vector notation, tadn literally would tend to mad processes too small for profitable parallel
execution using a MIMD. Indct, the ANSI FORRAN 8x vector notation is notven capable of encoding
mary of the most dicient parallel &ecution forms used byxisting vector processors [ScK86]. Chapter 6

details the relationship betweearious kinds of tayet machine and ‘actor” code.

Vector notation, as it is supported by ANSI FIHRN 8, is little more than a ceanience feature
for the programmer — much as the data type COMPLEX isvantemnce. In ay case, the refinements
made to ANSI FORRAN 77 are compatible with theegtor notation of ANSI FORRAN 8x; hence, RF

easily can bextended into RF 8x.



-37-

2.1. Access Brmissions 1o Globals

As was pointed-out abve, FOR'RAN supports tw kinds of global data:

. COMMONSs, which are used to group setwiables together by name and teegFUNCTIONSs and
SUBROUTINES access to thariables by these group names.

. I/0 channel (logical unit, logical file) numbers, each of which is usedvtothe set of data within a
file a name (number) and torgiFUNCTIONs and SUBROUTINES access to the data by that name.
The kind of language construct needed toesthe problems associated with global data references

closely resembles a COMMON. While COMMON statenvishtstipponaming features needed,ytlaee

scattered throughout a source program and potentially acroggealanber of files. @ male compilation

speed acceptable, the information mustuzlable without haing to scan the entire source program.

In an RF program, information concerning global data is placed in a separate interface specification
file,!” which is included by all files that constitute the source program — much as C programs #include
“header files. The interface specification file contains the definitions of glolziables and the access

permission each FUNCTION and SUBROUTINE has to each global.

Borrowing the terminology of Ada [Ada80], there areotwrimitive kinds of access permission rele-
vant in performing concurregaletection and generation ofiefent parallel code:

IN Permission for aariables rvalue to flav into a FUNCTION or SUBROUTINE; permission
to READ from a file.

ouT Permission for the rvalue of aaxiable to be dferent when the ariable flavs out of the
FUNCTION or SUBROUTINE from what itaw at entry; permission to WRITE to a file.
Also, as in Ada, these access permissions may be combined:

IN OUT Permission for aariables rvalue to both flav into a FUNCTION or SUBROUTINE and to
be diferent when theariable flavs out; permission to both READ from and WRITE to a file.

2.1.1. COMMOI1issions

Each indvidual entry within an RF interface specificationealone of the follwing forms:

IN /global_name/ subpr ogram_list
OUT /global_name/ subprogram_list
IN OUT /global_name/ subpr ogram_list

17. PREFINE discussed in section 2:1.2.2.4, automaticallyveds a FORRAN program into its
RF equvalent — automatically creating an appropriate iategfspecification file.



-38-

Note that global_name may be either the name of a COMMON or it can be blank, representing the unnamed

COMMON.

The following is a skletal &ample of the use of IN, OUT, and IN OUT:

C this would be the interface specification

C which appears in the file TEST.H

C SUBR1 and FUNC2 can both examine any var in A
IN /A/ SUBR1,FUNC2

C SUBR2 can change any var in COMMON A
OUT /Al SUBR2

C FUNC1 can examine and change any variable in A

IN OUT /A/ FUNC1

C the following appears in the file TEST1.RF
#INCLUDE TEST.H

FUNCTION FUNCL(. . .)

COMMON /A/ X,Y,Z

END

C the following appears in TEST2.RF
#INCLUDE TEST.H

FUNCTION FUNCZ2(. . .)

COMMON /A/ X,Y,Z

END
C the following appears in TEST3.RF
#INCLUDE TEST.H

SUBROUTINE SUBRI(. . .)

COMMON /Al X,Y,Z

END



-390-

C the following appears in TEST4.RF
#INCLUDE TEST.H
SUBROUTINE SUBR2(. . .)
COMMON /A/ X,Y,Z

END

It is important to note that the RF compiler will flag/aitempt to reference a global for which-per
mission vas not &plicitly or implicitly ' granted: if ay subprogram attempts taxae=ed the access rights
granted by the interface specification,adal compile-time error will result. According to the interface
specification gien in the preious example, the follaving definition of SUBRL1 is in error because only IN
rights were granted for members of the COMMON A:

SUBROUTINE SUBR1(B)
COMMON /Al X,Y,Z

X=5.0
END

By the same principle, grattempt to CALL a SUBROUTINE or FUNCTION which has accestegeés
beyond those of the caller also constituteatalfcompile-time error:

SUBROUTINE SUBR1(B)

COMMON /Al XY, Z

CALL SUBR2
END

2.1.2. 1/0O Channel Rermissions

As we pointed-out at the start of this section, I/O channels are a form of global, named by the INTE-
GER channel number (which is considered to beeadefined COMMON namey. &ample, the ability to
READ from 1/O channel 7 ould be granted to subroutine SUBR3 by:

IN /7/ SUBR3
The parallelization of I/O operations is traditionally one of the mofStulif and unreliable language

features, aswidenced by the lack of I/O operations in mamewv parallel-processing languages. In creating

RF this problem is\en more dificult because a lge part of the fleor of FORTRAN is its style of /O —

18. Permission is implicitly granted, foxample, for the MAIN to access all global data.



-40-

drastically changing the I/O auld make RF drastically dierent from FORRAN. We hae chosen to

maintain the FORRAN [/O style, at a slight cost in reliability of parallelization.

To function properlyl/O operations wuld hare to be based on naming files -tt IFORTRAN, and
hence RFI/O is based on namindhannels. RF compilsrassume that opations performed using dfr-
ent 1/0 dannels ae independent of eamther. Strictly speaking, this is notvadys true — a single file
may be associated withvaral I/O channels: in the case of a WRITE, the compiler might accidentally cre-
ate a race condition by assuming that operations ordiffierent channels can proceed simultaneoubly
fact, this can also cause unpredictable results on some single-processor machines, duafferibl® b

problems.

The problem with FORRAN 1/O is not really a language problenuttone of poor operating system
design. Taditionally although a file system identifies files by name, the oaly w which a user program
can access a file is by establishing a conceptual data path to thediignts — it there may be multiple
paths to the same object and, because paths are bound to files at run time (and may be re-lydimd at an
during program xecution), all these aliases are unreableg at compile time. It should be possiblewho
ever, to directly reference the file'contents by using the file name. Since file names are unique (by defini-

tion), there would be no unresoable ambiguity in aliasing if files were referencedlesively by name.

2.2. Argument Passing And Rarameter Definition

Each FORRAN FUNCTION or SUBROUTINE is able to accept anmber of call-by-addressgar-
ments. Since call-by-address is used, eaghraent passed to a subprogram could be carrying IN, OUT, or
IN OUT, permissions to the rvalue: for the same reasons that a parallelism-detecting compiler must kno
the access permissions that subprograms teCOMMONS and I/O channels, the compiler mustkrat
permissions the have to their parameters. As with global information, the same specification must be
available to the compiler during compilation of both the CALLer and the CALLed subprogram. The

CALLed routine cannot require accessif@gjes not granted by the CALLer

The access prileges granted by the caller should generally match those rights required by the called
subprogram of its parametefsBy placing this information in the interface specification, it need ergi

only once for each FUNCTION or SUBROUTINE. RF uses themMalijpsyntax to state which access

19. In fact, these permissions often do not match. Arviddal call might pass more restricted
rights than the subprogram normally requireg,that are knen to be sufcient for that call.
Capitalizing on this &s deemed too rigk



-41-

rights are carried by eachgament of a subprogram:

function_spec ::= ARGUMENT FORTRAN _type sjvec
suboutine_spec ::= ARGUMENT aspec
arg_spec ::=sub_name (a_p_list)
a p list::=a p_list, perm type_size
| perm type_size
perm ::=IN | OUT | IN OUT | null_string
type_size ::= FORTRAN type (dim_list)
| FORTRAN_type

| null_string

where FORTRAN _type isyadata type supported by standard HBRN.

Normally, ARGUMENT specifications will state the access permission carried byganbrar hov-
ever, if the access permission carried by aguarent is not specified then the permission is assumed to be
IN. The optional type_size specifications, ifvgn, allav the RF translator to perform type checking on

arguments — a feature not related to parabelceition, lut desirable for other reasons.
As an eample of access permission specification, a subroutine to addlties vf tvo variables and
store the result in a third might be written as:

C this would be the interface file TEST2.H
ARGUMENT ADDSUB(IN, IN, OUT)

C the following appears in the file TEST2.RF
#INCLUDE TEST2.H

SUBROUTINE ADDSUB(A, B, C)

C=A+B

RETURN

END

Where ADDSUB would be called as, foxxample:

CALL ADDSUB(5, D, E)

A better (lut still artificial) example of the use of ARGUMENT is the olig matrix multiplication

code:



-42-

C this would be the interface spec., "MATMUL.H"

C MATMUL and DOTPRO examine COMMON AB
IN /AB/ MATMUL, DOTPRO

C DOTPRO can examine,examine,& change its args
ARGUMENT DOTPRO(IN,IN,OUT)

C MATMUL can change its arg
ARGUMENT MATMUL(OUT)

C the following appears in some other file

#INCLUDE MATMUL.H
SUBROUTINE MATMUL(C)
REAL C(100,100)
COMMON /AB/ A(100,100),B(100,100)

DO 10 I=1,100
DO 20 J=1,100
CALL DOTPRO(l, J, C(1,9))
20 CONTINUE
10 CONTINUE
STOP
END
C the following appears in yet another file

#INCLUDE MATMUL.H
SUBROUTINE DOTPRO(l, J, C)
COMMON /AB/ A(100,100),B(100,100)
SUM =0.0
DO 10 K=1,100
SUM = SUM + A(1,K) * B(K,J)

10  CONTINUE
C = SUM
RETURN
END

The constructs presented in this and theiptes section enable the RF compiler to determine which
subprograms can beexuted in parallel with one another without requirirgemsve global analysis. The
constructs presented in thexhsection permit the programmer topeess information y@nd that which

can be gpressed in a “dusty deck” language, hence greatly increasing parallelism.



-43-

2.3. FORTRAN Indexing And Partitions

Partitioning is the technique used by refined languages to creat@araes for arbitrarymutually
exclusive, portions of a data structure. Once these nawist i is a trvial matter to independently state
access permissions for each piece (called a partition element). Data may be grouped into partition ele-
ments by arbitrary formulas within a RF PARTITION statement. These formulas are called membership

test formulas.

Although the generality of RF partitions iswethe concept is not entirely alien to FORAN pro-
grammers. Br example, a FORRAN arrays membership test formula simply checks that the subscripting
values are within bounds. Indeed, FIFERAN’s pseudo-array-dimensioning is a mechanism for a restricted
kind of partitioning with static indeng: ary portion of an array which is stored conseelii in memory
can be treated as a separate entity by passing the first element of the sequence to a subprogram which
declares that gument as an array (rather than as a single element). This feature BRENRs quite
commonly used, since it also neakit possible to write functions in FORAN which will operate on data
structures whose sizes are not\wnoat compile time (this aspect is discussed further in section 3:3.4.1).
However, rather than aiding compiler analysis, pseudo-array-dimensioning hinders analysis because it
implies that giing access to what appears to be a single element of a data structure may actuatg be gi
access to gnportion of the data structure. In addition, pseudo-array-dimensioning does not aid the com-
piler in determining whether the access rights passedrious subprograms are mutualkcleisive — the

fundamental motiation of partitioning.

Many other languages also support constructs which are in sayesimilar to RF partitions. In
PL/I and seeral other languages, there is the concept of a slice @ftarvor matrix: although the elements
of a vector/matrix slice need not be contiguous in memitryy must be addressable by a linear kidg
formula and there is no guarantee of mutxalesion — one datum may appear ivegl slices simultane-
ously Several languages using@icitly parallel control constructs incorporate the concept of index sets
(for example, [Per79] and [LuB80]),ub these also are typically restricted to linear kiolg formulas (or
set operations thereupon) and do not directlyigefor mutual gclusion. Although it is notxceedingly
difficult for the compiler to méanically pove that tvo index sets constructed by set operations on linear
addressing formulas are mutuallycusive, the &ct that this property isnbbvious to a personxamining a

source listing is enough to makuch notations less desirable than the RF construct.



-44-

RF partitioning of a data structure is specified using the (apparexdigyitable PARTITION state-

ment:

partstat ::= PARTITION ( structure , partlist part )
partlist ::= part ( condition ) , partlist

| null_string

where structue is the name of the structure being partitioned (including dumamjables naming each

subscript) and part is a name for a partition element.

The following code illustrates the definition of a PARTITION which creates partition-elements nam-

ing the portions of the square array A which are, respytaboe, on, and bels, the diagonal:

REAL A(100,100)

PARTITION(A(I,J), AUPPER(J .GT. I),
1 ADIAG(I .EQ. J), ALOWER)

The conditions within a PARTITION statement areaguated left-to-right on only those data wiic
have not yet been placed in a partition element. Therefore, all partition elements are guaranteed to be
mutually exclusive: eah datum belongs to only one. Therefore, arbitrary operatiofesatitt partition ele-
ments can bexecuted simultaneously without the possibility of races or deadlocks. It isattisvhich
enables programmers tapress the parallelism theervision by partitioning access rights to data struc-

tures.

In RF, the shape and ingliag structure of the original data structuis presered for each partition

element, rgardless of the partitioning specification.e\8all this partitioning with static ineteng 2°

For example:
C the following reference zeroes the value
C of what was originally called A(3,4)

AUPPER(3,4) = 0.0

RF’s static indeing means, forxample, when a square matrix is partitioned into partition elements

abore and belw the diagonal, each partition element has the same&ingiéormulas and shape as the

20. The alternatie scheme, called dynamic indley, is discussed in section 3:3.3 (RC partitions).
For RF, the fct that dynamic indéng could generate non-rectangular data structureemiak
inappropriate — RF programmers will notamt to think in terms of such data structures
because carentional FORRAN doesnt provide ary way of kuilding them.



-45-

original matrix, lut some of the data of the original matrix are inaccessible througkingdeach partition-
element name. A reference to a datum by irde through the partition element AUPPER, where the
datum is conceptually contained in the partition element ALOWER, is anfecambination of compile

time and the run time checks can detect and report all such errors.

Consider:
C the following reference is valid
AUPPER(5,7) = 3.14159265
C the following reference is not valid
C and would cause a fatal compile-time error

ALOWER(5,7) = 3.14159265

to support these checks, each partition element mustehenembehip test associated with it.

The user mayxplicitly test whether a particular datum is a member of a partition-element by using
the unary prefix operator . MEMBER., which simply applies the membership test formula for thénfpllo

subscripted reference and returns a logiehler of . TRUE. if that reference isalid. Thus:

C the condition below is obviously .TRUE.
IF (MEMBER. AUPPER(1,99)) GOTO 30
C this might or might not be .TRUE.
IF (MEMBER. AUPPER(4*K-1,L)) GOTO 30
C the condition below is obviously .FALSE.

IF (MEMBER. AUPPER(l,1)) GOTO 30

There are at least twways in which partitioning using static indeg can be diciently imple-
mented. The membship test associated with each partition-element can be represented by:
(1) a thunk of code which, gén a tuple of subscripalues, galuates whether the element irdd by
that subscript tuple is logically present in the partition element, or
(2) a boolean structure which has the same shape an riadge(s) as the partitioned structure, where
each element of the boolean structure is .TRUE.tife corresponding element of the partitioned
structure is a member of this partition element (and is .FALSE. otherwise).
Neither of these implementation techniques requires the members of a partition element to be contiguous in
memory or subscript-tuple address space, nor is it required that each partition element consist of members

selected from the original structure by a linear formula.



-46-

To demonstrate these implementation techniques, suppose that ISPRIME is a function which returns

.TRUE. if fits agument alue is a prime number and that the failog PARTITION statement is gen:

REAL A(6)

PARTITION(A(l), PRIME(ISPRIME(I)), NOTPRIME)

2.3.1. Thunk-Based Implementation

Using the thunk-based implementation of the membership function, this becomes:

PRIME A
O
membeship
A(2)
test thunk
A(3)
NOTPRIME A(4)
membeship
A(6)
test thunk

Figure 3:1: Non-Linear Static Rartitioning Using Thunks



-A7-

where the membship test thunks are respegety:

((subscript .GE. 1) .AND. (subscript .LE. 6)) .AND.
ISPRIME(subscript)

and:

((subscript .GE. 1) .AND. (subscript .LE. 6)) .AND.
(.NOT. ISPRIME(subscript))

The original arrayA, actually had the membership test:

(subscript .GE. 1) .AND. (subscript .LE. 6)

associated with it, and the partitioning conditions are simply additional constraints on this original-member
ship test. Lilkwise, for &ample, if PRIME were further partitioned into the partition elements B and C

such that:

PARTITION(PRIME(l), B(I .LT. 4), C)

the membeship test thunks for B and Guld be:

((subscript .GE. 1) .AND. (subscript .LE. 3)) .AND.
ISPRIME(subscript)

and:

((subscript .GE. 4) .AND. (subscript .LE. 6)) .AND.
ISPRIME(subscript)

Notice that the membership test did not become more canipléhis sub-partitioning because, if we
assume that the compiler could determine teeesequence of subpartitionings in the program, the com-
piler can eliminate common suEessions and redundancies within the tests. If this is not done, the test

expressions for sub-partitioned partition-elements form chains of thunks.

For obvious reasons, this implementation schemeeasgdartitioning a zero-cost operationt males
membership testing moderatelypensve. It is important to recognize, hvaver, that the membership tests

would typically be gecuted within parallelized code.



-48-

2.3.2. Boolean Structue-Based Implementation

As mentioned earlieran alternatie implementation of static partitioning membership formulas
employs a boolean structure of the same shape and nadge(s) as the original structure. The partitioning

of A into PRIME and NOTPRIME, as/gh in section 3:2.3.1, can also be implemented by:

PRIME NOTPRIME A
TRUE. .FALSE. A(L)
TRUE. FALSE. A(2)
TRUE. FALSE. A@3)

FALSE. TRUE. A(4)
TRUE. FALSE. A(5)

.FALSE. TRUE. A(6)

Figure 3:2: Non-Linear Static Rartitioning Using Booleans

with very similar properties. df example, sub-partitioning the partition-element PRIME simply causes the
boolean structure representing the members of PRIME to be .AND.ed with the additional membership
constraints.

Using this implementation scheme, partitioning is a nedticostly operation, i membership test-
ing is \very inexpensve. Hawever, the construction of boolean structures is also typically able to be paral-
lelized. Furtherthe close resemblance between these structures and”’SpktDessing-element enable bit

21. SIMD architecture is discussed in section 6:2.



-49-

vectors mags this a particularly good implementation sggtéor this class of computer

2.4. Conclusions

In sections 3:1 and 3:2, weveagiven a detailed presentation of the application of the language-
refinement methodology to FORAN and a definition of the resulting language, RF

Throughout the modifications of section 3:2, the FARN flavor of the language has been main-
tained and no particular wieof parallel processing has been imposedwéer, the language no longer
prevents the programmer from writing programs so thay #en be understood and parallelized by the
compiler — using the techniques outlined iartP2 — into eficient code for nearly ankind of parallel
computer? Further since the refinements aid any compiler iilding a more accurate flegraph, RF is
completely compatible with, andfigfently usable bycompilers for single-processor machines. dct fby
applying comentional optimization techniques to the better quality ffpaph, RF may actually be a more
efficient language for SISD machines than ANSI FBRN.

3. A Second Case Study: Refined C

Refined C (RC) is a sequential programming language based on the syntax and semantics of the pro-
posed ANSI C standardubincorporating constructs which pide a compiler with detailed information
about data-access flow. This additional information is used by the compiler to greatlwarifg@bility to
detect parallelism and, incidentallpy enhance the compilergeneral ability to optimize code. Since RC
differs only slightly from C, a programmer who is comfortable using C can easily write RC code. RC
therefore allars a programmer to write code inanfiliar sequential syntax and style, yet it insures that a
compiler will recognize the parallelism of each algorithm and will produce good machine-dependent paral-
lel code.

This section presents both a briefiesv of the problems encountered whemlanalysis is applied
to unmodified C code (teard concurrenc detection) and the specification of the RC programming lan-
guage. Since section 3:1 discusses thiicdities encountered in analysis of unmodified FRRN code,
only those problems which occur in C and not in FERN are discussed here.

Every aspect of FORRAN which causes concurrgndetection to dlter also occurs, in sombat
modified form, in C. Relate to a FORRAN program, hwever, a C program characteristically demon-
strates &r more compbe run-time beheaior. As might be g&pected, the substantially tifent natures of C
and FORRAN are reflected in significantly @i#frent-looking refinements being made to C as compared to
FORTRAN. However, the principles are the same. Section 3:3.1 discusses the problem arising from the
generality of C control structures. Sections 3:3.2, 3:3.3, and 3:3.4 discuss the RC constructs called func-

22. Of course, to obtain peakfiefency the algorithm may hee to be changed more drastically
than current compilers are able. This i®ltke agument thateeryone should program con-
ventional computers directly in assembly code; it is hardgoeathat it vouldn't be more df-
cient to &ecute than code written in an HLLytht's ezen harder to imagine that thefdilence
is worth the efort.



-50-

tion prototypes, partitions, and paramtypes.

3.1. Control Constructs In C

C control structures are richer than thosevipled by mag other languages. Oneample is the
for loop construct. A C for loop is equi valent to a while loop, and ary C while loop can be
expressed in terms of the C macro:

#define while(e) for(;(e);)

Whereas the dyword DO in a FORRAN program tells the compiler where to find the loop inde
variable and insures that thiariable isnt modified within the loop>&ept to follav the progression speci-
fied in the DO statemefftpbserving the &word for within a C program provides none of this informa-
tion. The fct that the &word for appears in the folloving example is of little help in determining that
the loop is gecuted for i = 0 to 19 with an increment of 1:
i=0;
=5
for (k = 20; k > i; ++j) {

a[i] = bfj] * c[kI;
++i;

By providing the programmer with more fikle control constructs, C forces the compiler to use floal-

ysis to understand them.

C'’s control flgibility makes programming easier §81], yet the recognition of constructs based on
graph analysis mas more parallelism visible to the compifeaind incurs only minor additional fefrt in

analysis.

The cost of the recognition process is typically small becauseyiavant, the graph must be con-
structed and scanned in order to transform the structure for paraiteition. The benefits are substantial
because, using graph analysis insteadegiviord matching to understand (parallelizable) loops, loops are

recognized een if they were constructed using goto statements.

23. The first complete RC compiler implements onlyotaef these three constructs: paramtypes
have been temparily omitted. Raramtypes are not needed for the purpose of concyrrenc
detection, bt sene primarily to minimize the loss ofxpressve paver associated with the
imposition of strict typing on C.

24. Explicit assignment of aalue to a loop ariable is illgal in FORTRAN.

25. Even with FORRAN, parallelizing compilers which use graph analysis to identify loops con-
sistently outperform those which useyword matching [Con85].



-51-

Although current programming styles tend to produce code whose structure can be recognized by
matching leywords, mag important &isting programs, and most programs automatically generated by
software tools such asacc [Joh75], depend on use of goto-li& constructs. This is an additional strong

incentive for maintaining the C control constructs.

In summary control flibility is a feature, not aupy. RC should, and does, presert. The only
complication this introduces is that an RC compiler must perfonm dimalysis — kyword-based paral-

lelization techniques auld find almost no parallelism in typical RC code.

3.2. Function Pototypes

Function prototypes are the mechanism used to specify data-aceeamfbog the arious functions

which constitute a RC program.

In C, flow of access permissions tanables between modules can only occur by means of function
amument passing (using “pointer’gaments) or references to gloFélsA function may hae ary of the
following four kinds of access permission toaiable:
< Read-only access permission.

> Write-then-read permission. Permission to write and to ra#idiobread only after lwéng written.
In other words, the function may store awealue in the ariable, and it may read thalue it has
stored, ht it may not read thealue which the ariable had upon entry to the function. This is useful
because tw rggions of code which refer to the sanwiable, one creating and operating on an old
value and the other creating thewnealue, can be made to run in parallel by allocating an appropriate
chunk of uninitialized memory to the process which creates thevalee — &en though it is writ-
ing, it need not depend on completion of thevjones write.

Modify permission. Permission to read and/or write, with these operations occurrigardan

- No permissiort,

26. Currently RC does not permit upward-exposed statigriables. In other wrds, static local
variables are not permitted to carmglwes across wocations of the function which contains
their definition. This is easily chee#t at the time the function is compiled: if there is & flo
path from the start of the function where it is possible that a static ladalble wuld be read
before it is written, theariable is used iligally. Itis also illegal to return a pointer pointing to
a \ariable allocated locallyeven if it is declared as static.

27. Either the ariables value may be neither read nor written iarthe case of non-pointergar
ments, no permission applies.



-52-

3.2.1. Rermissions © Arguments

Unlike FORTRAN, which uses call-by-address, C uses call-Blyw. This means thatgument al-
ues are copied and only the copies are accessible to the called function. (Only the called function can refer
ence copied guments, hence there is no aliasing problegandless of the gument accesses made by the
called function.) The onlyxeeption occurs when angament of a pointer type iswgn, in which case

call-by-value operatesxactly like call-by-address.
When a pointetyped &pression is an gument to a function, the object of the pointer is the item for
which permissions must be stated. A simpianeple of this is:

/* assume there are no globals */
auto int i, j, k, *p;

/* assume p doesn't point at i, j, or k;
likewise, 110 & 120 are not referenced.
*/
110: i=j*Kk;
120: subr(j, p, &K);

Even though i, j, k, and p are local ariables and C walays uses call-byalue. for a compiler to deter
mine if it would be safe toxecute statement 110 in parallel with statement 120, it musivkmbat access
permissions are passed to subr() via:

. the pointer p and

. the pointer whosealue is the address of k.

It is not necessary for the compiler to iinbow subr() will read or write its first ar gument, since that

argument is simply a copiedalue and, therefore, it isfettively a nev variable local to subr().

Suppose the definition of subr() appears in a separate file and is (in pre-ANSI “old” C):



-53-

void

subr(a, b, ¢)

int a, *b, *c;

{

130: *b = *c; [* write *b, read *c */
140: c = &a;

150: *b += *c; /* read *b, write *b */
}

Since the first parameter is not poirtgsed, it needs no access specification in the function prototype.
The second parameter is pointgped and its object is unconditionally written in line 130. Thadue is
then read in line I50 and awevalue is written. Since a writevedys precedes the first read, the second
parameter must carry at least write-then-read permission to its object. In line I13aluthgeinted-to by

the third parameter is read; this is the only use of the third parasnebject. The reference to ¢ which
appears in line 140, and which admittedkhibits bad programming style, unconditionally raakhe object
referenced by the original pointer inaccessible — it doesmistitute a reference to thet@rnal object and

neither does [50.

If the definition of subr() appeared in a separately-compiled file in ANSI C, none of this vital
information could be determined withoutpensve analysis. An RC function prototype to specify the
required permissionsauld be as follass:

void
subr(- int a, > int *b, < int *c);

If the full generality of C pointers is to befiefently dealt with, then a language construct for specifying all
possible aliases of indirection on a pointer may also be added to the language. Such a construct is imple-
mented in [Ste86], although RC does not strictly require it, since RC partitions can simulate C pointer oper

ations.

3.2.2. Rermissions © Global Data

As in RF it is necessary that the compiler be able not only to determine the permissions passed using
call-by-address, Wi also the side-fdcts that each function has on globatigbles. In RFthere are tw
separate mechanisms used to specify thig: ftbe subprogram ARGUMENT declaration and the IN, OUT,

and IN OUT declarations for global data. The original proposal for refined C [DiK84] also incorporated



-54-

different mechanisms for these separate purposeweddn the ANSI X3J11 committee is almost certain
to adopt a function prototype declaration syntax for ANSI C — for the shkompatibility the nev defi-

nition of RC &pands this syntax to permit specification of all igeycedural flav information.

In terms of the refined-language methodojaggoes not matter which syntax is used. Bothvio®
means for specifying the same information and bothentladt interprocedural informationwvailable to the
compiler so that analysis of each module can be performed separately from analysis of all others. The
choice is lagely a matter of personal preference, although the ease of updating the specification to reflect
changes in a program and the ease with which the compiler can confirm theyaotthacspecifications
are also important concerns. The old styéswslightly harder to update; theanstyle is slightly harder for

the compiler to check. #ould not hae changed style were it not for ANSI X3J11.

Section 3:3.2.1 demonstrated the syntax for specifyiggnaent data-access permissions; the access
permissions to each globahnable referenced within the function are specified at tiggnbimg of each
function prototype:
intx,y, z=20;

{ < x; }int fO(< char *p);
{"x,y;>2z;}void f1(" int *p);

Specifies that:
. X, ¥, and z are global intger \ariables (z5 initial value is set to 20),

. fO is a function which can read the global x, returns alwe of type int, and takes one ajument
named p which is of type read-only pointer to char, and

. f1 is a function which can modify the globals x and y and can write-then-read the global z, it has no
return \alue (returns type void), and has modify permission to the object of iggument int
pointer named p.
A refined C compiler can detect, and report as an,amprattempt for a function toxeeed its data-
access rights. d¢ example, a function cannot call another function unless the caller has at least the same

access-rights to all globals that the callee has: f1 could call f@ fi® cannot call f1.

The syntax for a function prototype#s:

28. The BNF-like notation presented is &k from the documentation for the first complete
refined C compiler In it, { x } means 0 or more occurrences of X, where x is an arbitrary
string of terminals and non-terminals, and [ x ] means 0 or 1 occurrences of x.



-55-

function-pototype ::=

[permist] type declator (" ar glst’)" ’;

pel’m|St = ,{, perm {';’ perm} 1;1 1}1

perm ::= access id_|Ist

id_Ist::=id_name {,’ id_name}

arglst ::=[arg {", ar g}]

arg ::= [paccess] [type] [declator]

paccess ;= access

access ;=<

RC provides type checking of actual and formal parameters (if the type ofgamant is omitted in the
function prototype, it is assumed to be int). If the deckdtor is omitted from an ay, then the access spec-
ification is applied to the corresponding parameter in the function definitiop.infarmation specified in

a function prototype need not be repeated in the function definition.

3.3. Rartitioning W ith Dynamic Indexing

Dynamic partitioning of an array by an arbitrary formula specifying which partition-element each
datum belongs to can produce partition-elements whiemat the same size or shape as the original. In
the case of a multidimensional arraypartition element need notea be rectangularFor example, each
“row” might be of a diferent length. Brtitioning with dynamic indeng permits the shape and indieg

structure may change dynamically according to the partitioning specification.



-56-

For RC, both partitioning with static and dynamic irohgy are reasonable; ivaver, in the interest of
simplicity, the current definition of RC supports only dynamic ximtg There are three nebuilt-in func-

tions in RC which support dynamic partitioning: part(), fixpart(), and count().
The folloving RC code defines a 101-element argaigdes[], and then partitions it into tw o parts,
odd[] and even[]:

float grades[101], *odd, *even;
part(grades[n], odd,(n & 1), even);

such that odd[] consists of the odd-numbered elements of grades[] and even[] consists of the rest.
Note that the selected elements were not originally contiguous — odd[0] is grades[1] and odd[1] is

grades[3]. The count of items within odd[] is count(odd), 50 in this e xample.

The partition-element names remain bound until the reference to the original array appears, at
which time the entire array is conceptually restored and the partition-element names become unbound. If
part w as used, the array elements are restored to their original sequence; if fixpaaswised, the
array’s elements are re-arranged into the order in which dbpeared in the partition-elements. Had the
abore exkample been done using fixpart instead of part, the odd[] and even[]w  ould hare been the

same, bt grades[] elements w ould have been iwerse-shufed aftervard.

In general, a part statement can partition data into an arbitrary number of partition-elemewts. F

example:

float grades[101], *pl, *p2, *p3;
part(grades[n], p1,(n<25), p2,(n<75), p3);
causes pl[] to contain grades[0..24], p2[] grades[25..74], and p3[]

grades[75..100].

The syntax for the partitioning constructs is:



-57-

statement ::=
part’'(" e xpression [ identifier ]’
', partels ', identifier ') ’;’

| fixpart’( e  xpression [ identifier |’
', partels ', identifier ')’ ’;’

partels ::= partspec {’,’ partspec}

parspec ::= identifier ’,” expression

Partitioning a non-homogeneous struct or union instance by member name does not require a

part statement:

struct example {
int an_int;
float a_float;
} a[100];

a.an_int is a partition-element holding count(a.an_int), or 100, ints; a.a_float is a parti-
tion-element holding count(a.a_float), or 100, floats. This dif fers in that in standard C,
a.an_int w ould be the same as a[0].an_int and a.a float w ould be the same as

al0].a_float.

The generality of the semantics of partitioning with dynamicximdg as described abe, leads one

to believe that there is no ffient implementation. Heever, there are seral viable alternates:

(1) a partition-element can be instantiated byyiog the appropriate set of members from the original
structure,

(2) a partition-element can be represented using pointers into a maptlaerapy re-arranging/grouping
members of the structure without ¢y them, or

(3) a partition-element can be represented using a degervwhich gres a ne indexing formula for
the partition-elemert’members, ut this works iff:

(@) the partitioning formulas result in partition-elements whose members are placed at addresses
within the original structure which can be selected by a linear memory addressing formula and

(b) fixpart is not supported.

Of these, (1) w&s used in the first RC compilé€R) is the preferred implementation for most MIMD com-

puters, and (3) is a limitedubvery eficient, implementation that as first proposed as amtension of



-58-

vector notation.

3.3.1. Copy-Based Implementation

There is really gry little to be said about the operation of theyebpsed implementation of dynamic
partitioning; each partition-element is allocated enough space to hold the entire original $tustdrthe

members of the original structure which satisfy the partitioning formula are copied into this space.

At the time of re-combination of access rights, the members of the partition-elements are copied back

into the original structure.

For example, gven a function isprime which returns a true (non-zero) a&lue if its agument is

prime, the follaving partitioning:

float a[6], *prime, *notprime;
int i;

part(a[i], prime,isprime(i), notprime);

results in cog-implemented partition-elements of:

29. Some functional/single-assignment languages, such as Sisal, also support this kind of opera-
tion; havever, the lack of structure size information in such languageemikery difficult
to determine hw large an allocated space is big enough.



-59-

prime notprime a
a[1] a[0] a[0]
a[2] a[4] a[i]
a[3] — a[2]
a[s] — a[3]

— — a[4]
— — a[s]
Count=4 Count=2

Figure 3:3: Non-Linear Dynamic Rartitioning By Copying

3.3.2. Map-Based Implementation

The map-based implementation of dynamic partitioning is, inyntespects, ery similar to the
copy-based implementation. Each partitionable structure has, associated with it, an array of pointers to its
elements called the map. Normallg map is allocated at compile-time for each partitionable structure.
The act of partitioning is simply a re-ordering (gimg) of pointers in the map to form contiguous pointer

arrays for each partition-element.



-60-

However, unlike the cop-based scheme, this often requires only O(constafd)tebecause the
members of the partition-elements are either naturally contiguousyoarthelewed in a vay which can be
generated at compile-time. Thegample used to demonstrate the yetyased implementation appears as

follows when the map-based scheme is used:

prime map a array a
S Ol
Count=4 Qﬁ al]
Qﬁ a[2]
notprime Qﬁ al3]
S O\
Count=2 04 a[s]

Figure 3:4: Non-Linear Dynamic Rartitioning By Mapping

If a partitioned data structure is further partitioned, the map-based technique presewteditladvays
result in a double indirection to fetch data, no matter how mamysl@f partitioning intervene. Thiser
head is relatiely small — about the same as theedhead imolved in array subscript checking in a lan-
guage lile Rascal. It is true that the potentiah&iags in partitioning eerhead is balanced by the cost of an
additional indirection (through an element of the map array)veryeaeference, hwever, there are other

benefits in using the map implementation.



-61-

Using the map technique, it is easy to implement a singpamsion of the concept of a partition: the
idea of an infinite partition. An infinite partition is a partition which can increase its size dynamjcgdity
always appear to be linearly addressed. This is essentially the mechanism needed to support parallelized

file 1/0 and dynamic memory allocatith

An infinite partition is the same as a partition-elemextept in that the members of an infinite parti-
tion may or may not, be present. If a member of an infinite partition of type file is to be written, and that
member is not present (has a nil map entry), then amgisk block is allocated and entered in the map. A
store into a nil member of an infinite partition of ay other data type uokes the storage allocator to cre-

ate an item of the appropriate type and places its address in the map for that. member

For example, if functions f and g are to simultaneously create substructures of a comata struc-
ture, each allocating itsam memory dynamically and returning the allocated structureg,dam this be
expressed without violating the refined-language methodology rule that no called routine has adgeess pri
leges superior to those of its caller? Assuming that @ instead of * distinguishes an infinite partition, this
can be done by:

float @mempool, *a, *b;
inti;

/* allow space for up to 100 elements in a,
and the rest for b.

*/

part(mempool[i], a,(i<100), b);

f(&a);

g(&b);

in which no space is allocated for mempool until f and g attempt to store in its members (via the members
of the partition-elements a and b). The partition-element a can hold up to 100 members; b can hold up to
the maximum allocation — 100 members. This does not violate the accesgrifwiples because,
although the data @ not created in the code calling f and g, the access rights were, and these rights were

passed den to f and g, and finally returned by them.

30. Despite this, RC does not directly support infinite partitions. This decisashmade to main-
tain the style of C programming in RC; in C, file I/O and dynamic memory allocatien ha
never been bilt-in features.



-62-

The usual map-based double indirection enables the non-comseduotiks of an infinite partition to
appear as a linear array — anckr to be partitioned agn. In fact, since the map itself is referenced
through a pointerthe maximum number of members can be changed simply by allocatimgraapeand
changing the pointer

Since the implementation of RC partitions in [Ste86] isyebb@gsed, rather than map-based, infinite

partitioning is not currently supported.

3.3.3. Dope ¥ctor-Based Implementation

Unlike the cop-based and map-based implementations of dynamic partitioning, the dojoe v
based implementation does notatve ary changes to a data structure; ratliteinvolves creation of e

linear indeing formulas which refer directly to the original data structure.

This concept is essentially the same idea used to implementsetein [Per79] and [LUuB80]. As
discussed in section 3:2.3, it is possible for the compiler to mechanically determine whether lixéay inde
formulas werlap; hence, the compilerowld perform this analysis and generate an error if the lineax-inde
ing formulas werlap (since the dopesgtorbased implementation cannot represent the non-lineaxiimge

formula which vould be required).

For example, partitioning into odd and even partition elements/gh by:

float a[6], *odd, *even;
inti;

part(a[i], odd,((i % 2)==1), even);

would produce the dopesgtorbased implementation:



-63-

odd array a
Count=3 all]
Step=2 even a[2]
Count=3 a[4]
Step=2 a[5]

Figure 3:5: Discontiguous Linear Rrtitioning By Dope Vector

To reference the Nmember of odd in the gample abwe, one wuld simply multiply N by the step size

for odd, which is 2 (really 2 * sizeof(a[i])), and add that to the base pointer of odd, which is the

address of a[1]. Hence, the reference looks éka comentional array referencexaept in that the step

between elements does not necessarily equal the size of an element and the base address of the array may

have shifted.

Other commonly used linear partitioning formulasubd typically partition an array into N contigu-

ous parts, as in:



-64-

float a[6], *al, *a2, *a3;

inti;
part(a[i], al,(i < t1), a2,(i < t2), a3)

which partitions a into three partition elements whose members are separated by a step size equal to that of
a, but whose bases diifr (al is based at &a[0], a2 is based at &a[t1], and a3 is based at &a[t2]); or
into N non-contiguous parts, as in:

float a[6], *al, *a2, *a3;

inti;
part(a[i], al,((i % 3)==1), a2,((i % 3)==2), a3)

which partitions a into three partition elements whose members bep sizes equal to three times the step
size of a, as well as hing different base addresses (al is based at &a[1], a2 is based at &a[2], and a3

is based at &a[0]).

Notice that partitioning a partition element is not a problem —xthetesame rules apply

3.3.4. Dynamic Rrtitioning Summary

In the worst case, using grof the abwe implementations, partitioningvialves O(N) brt>! — but
compile-time optimizations can rem® much of the werhead and, in mgncases, the operations can be
done fully in parallel, so the time tak is often between O(1) and O(log N), depending on details of the

architecture.

Even if the time takn is O(N), this ébrt does not constitute uselessrw done merely to support a
notation, ratherit was irvested in simplifying the indéng computations that euld hare to be done no
matter hav the program is written. This is because partitioning by a “messy” formula would not be speci-
fied by a ppgrammer unless he wanted to be able to access most of the da@disgtorthat formula. If a
programmer needs only to reference the 14th oddettielement of an array af] with 1000 elements, he
can refer to it using the usual indgleg (2 * 14 - 1, simply a[27]) rather than by partitioning and ingimg

the partition-element.

31. This ecludes the cost ofvaluating the partitioning conditionakgressions, since this cost is
not, in general, related to N.



-65-

3.4. Faramtypes

Paramtype is an etension of the concept of type designed to compensate foxpnessve paver
lost by imposing strict typing. Much of the yer of C denves from the dct that, while it supports a
sophisticated type system, it alsoyides sgeral ways to @erride types [K€r81]. Compared to most other

languages, C is weakly typed.

Unfortunately relatvely strong typing must be imposed if sidéeefs are to be understood by the

compiler — and that is the primary concern in automatic parallelization.

3.4.1. Stong Typing

An excellent, and well-knen, example of the xpressie paver derving from weak typing is often

given as an gument aginst Riscals strong typing.

The declaration of a run-timasiable-size array (most commonan array of characters) is impossi-
ble in standard &cal. The problem stems from tlaef that the size of an ay is part of the amy’s type,
but the size must be a compile-time constant. If one array is declared to hold 5 characters, and another is
declared to hold 6, thesedvarrays are of diérent and incompatible types. Img$eal, therefore, it is not
possible to write a function which accepts as @ument an array whose length is wmoonly at run time
— there is no \ay to declare the guments type. Furtherthere is no way to create an object of arbitrary
size at run time — because dynamic memory allocation onlyw&aw to create an instance of a declared

type, each of which has a sizedfikat compile time.
Although the Cs definition hides theatt, the size of a C array is also part of its type and must be a

compile-time constant. Considéor example:
int a, b[8];
and suppose that sizeof(a) is 4. Then sizeof(b[0]) must also be 4, b ut sizeof(b) is 8*4, or 32.

As in Rascal, it is impossible in C to declare a run-timgable-size structure; in C, though, it is possible to

get around this restriction. Consider:



-66-

int *c, d, e;

¢ = (int *) malloc(sizeof(*c) * d);
cle]=...
.=...cle]...

in which c is efectively an array whose size is thalwe of the run timeariable d. C allavs this because
the action of malloc() is undecipherable by the compilerbut it is also prone to human errdieak typ-
ing also implies that a pointer to iger might point at antype of datum, whereas strong typinguid at
least guarantee that non-igée typed data could not be referenced through the pointer undeiresm-

stances.

The diferences are that:

. C permits a type to beverridden using a type cast, hence there are numerous acceptable “lies” about
the type of a structure\(en if relatvely strong type-checking is done) and

. the cowentions of C pointer arithmetic pride a consistent ay to address lyend the declared
bounds of a structure.

Togethey these dfierences enable C to escape the problem much a3RARs pseudo-array-dimension-

ing does, rcept that the C mechanism does not need to use a subroutine eatlédype checking. It can

be escaped by using either a type cast oxtna éevel of indirection (a pointerariable).

Paramtypes repair a logical inconsistgiit the type system of C — thenale it possible to declare
data structures such asaxiable-length array of characters, which C programmers commonlyuideye
never been able to specify in such ayas to withstand strong type-checkingrdntypes also permit RC
to be used to directly encode algorithms which were designed for weakly-typed functional languages — a

useful consequence because ynalgorithms hae been formulated to use that model of computation.

3.4.2. The Rramtype Mechanism

A paramtype is a \ariable-size parametric type, each instance of which is tagged with its dimensions
(which may be xamined as though thi@vere members of the structure). The notion of amdype almost
occurs in some cerntional languages: pseudo-array-dimensioning in RN does not define a type,

but it is used in a ay very similar to a paamtype. Bramtypes allev ary data type to parameterized:



-67-

struct float_array(n) {
float elements|n];

or:

struct family(length, children) {
char lastname[length];
int kids_ages[children];

h

Variable-size items ould be declared as being of the type specified by anptgtpe name without parame-
ters — struct float_array() or struct family() in the abo ve xamples. Ne items of par
ticular sizes can be declared as being of ap&ype name with inteervalued @pressions for each param-
eter — such as struct float_array(10) or struct family(16, people-2). The v alue of
the parameters in an item can be found by treating the parameters as thgugaréhstruct members

— if jones is of par amtype struct family(), jones.children w ould be the number of chil-

dren in that family().

The implementation of this concept can makse of a single contiguous block (which must be
dynamically allocated in some cases) for storage of eacmpgpe instance (as opposed to &dKists for
each \ariable field, as others V& proposed). égrmulas for indeing such a structure are well kmo and
differ from techniques for access of struct members only in that themgressions might not wolve only
constants. & various reasons, a pantype instance is generally represented as a pointer to the block
which contains the appropriate structure — useful because we may be abke teakang copies of struc-
tures in some cases (assignments where the origiha is nger referred to agjn, like the return alue of

a function).

3.5. Sample Pogram

In order to demonstrate thewper and ease of use of the RC constructs, we present gnsens of
quicksort modeled after theaftal ersion which appears in [W6]. The first \ersion is written in ANSI
C (see Listing 3:1), and the second and thetsions are written in RC (see Listings 3:2 and 3:3). Quick-
sort was chosen partly because it doewjat® a good demonstration of the benefits of R& &« and, more

importantly because quicksort is the defo standardxample for functional and single-assignment lan-



-68-

guages such a ID [ArG78] and SISAL [McS&5]We encourage comparison with these otixaneples.

The ANSI C ersion of quicksort is:

/* Function prototype */
void sort(int *; int; int);

/* Function definition */
void
sort(int *a; int i, r)

{

register int i, j, X, w;

i=hj=r,
x=a[(l+nr/2]
do {
while (a[i] < x) ++i;
while (x < a[j]) --j;
if (i <=J) {
w = ali]; a[i] = afi]; afi] = w;
+H; -,
}
} while (i <=j);

if (I <j) sort(a, |, j);
if (i <r)sort(a, i, r);

Listing 3:1: C Quicksort

where the function prototypeonld normally be #included from a header file separate from the file con-

taining the function definition.

There is certain to be some fine-grain paralleligailable from this coding. There is also the poten-
tial to execute the tw while loops in parallel, since they do not interfere with each otheHowever, nei-

ther of these is the major source of parallelism in quicksort.

32. This is somehat strange, since quicksort is supposed to be a sort in-place, yet functional and
single-assignment languages do not permit operations to occur in-place.



-69-

In this code, although it is @lous that the tw recursie calls do not interfere with each other
(because we kmo how quicksort vorks), it may be theoreticallys well as practicallyympossible for a
compiler to disceer this fict. The compiler wuld hare to examine all the code which called sort(),
and attempt to pree relationships wolving the agument alues, some of which may be dexd from run-
time input. The major source of parallelism for most machines, paradieLitton of the tw recursie

calls, would not be recognized.

In contrast to the ANSI Carsion, the RCersion is twvially analyzed:



-70-

/* Function prototype */
void sort(" int *a);

/* Function definition */
void
sort(a)

{
register inti, j, X, w;
register int *below, *mid, *above;

i =0; j = count(a)-1;
x = a[count(a) / 2];
do {
while (a[i] < x) ++i;
while (x < a[j]) --j;
if (i <=J) {
w = ali]; a[i] = afi]; afi] = w;
+H; -,
}
} while (i <=j);

part(a[w], below,(w<=j), mid,(w<i), above);
if (count(below) > 1) sort(below);
if (count(above) > 1) sort(above);

Listing 3:2: RC Quicksort

although the dferences between the dwersions are indeed small. Chapter 8 discusses the parallelization

of the aboe RC quicksort in some detail.

However, the abwe RC quicksort merely demonstrated that writing good RC code to duplicate the
function of C code does not require major changes in programming style nor notatiop.algtaithms
(for example, all diide-and-conquer algorithms), incorporate a partitioning as a basic operation and can
therefore bexpressed more fciently in a language which directly supports such an operation. The fol-
lowing RC quicksort, using fixpart, tak es adantage of theafct that partitioning is a fundamental com-

ponent of quicksort:



-71-

/* Function prototype */
void sort(" int *a);

/* Function definition */
void
sort(a)

{

register int w, *below, *above;

/* permanently partition (re-order) the array */
fixpart(a[w], below,(a[w]<a[count(a)/2]), above);
if (count(below) > 1) sort(below);

if (count(above) > 1) sort(above);

Listing 3:3: “Cle ver” RC Quicksort

Notice that, unlile most “cl@er” improvements to code in ceentional languages, the algocoding is not
only more dficient — it is easier to understand. (Of course, thisvéafeversion is only alleable using

dynamic partitioning implemented by gopr map operations.)

4. Refining Other Languages

In the preceding sections, wevieashaevn the application of the refined language methodology ¢o tw
very different languages, FORAN and C. Although the methodology calls for careful study of each lan-
guage to determine its particular analysis-inhibiting features, most languages in popular use today can be

refined in the same generahyvas FORRAN or C.

As a partial list, we belie that the follaing languages can be refined using littlgdoed the modifi-

cations discussed abe

Ada, Algol, APL, Assembly Language (for most machines), Atlask,ABASIC, BCPL, CoBOL,
Forth, Modula 2, Bscal, PL/I, PL/M, Ratst

But this is not true for all languages.

In sections 3:4.1 and 3:4.2, we consider the agest classes of language which cannot be refined

as discussed abe: languages with basic data structures which inhibit parallelism (e.g. Lisp and Prolog)



-72-

and languages which are characterized by tieiicitly parallel constructs (such as CSP and OCCAM).

4.1. Toward Refined Lisp

The problems wolved in refining Lisp are:

. Dynamic binding Variables, and functions, in a Lisp program are bound to names viaeuoest r
binding, whereas most languages (and, recealtbp mawp dialects of Lisp, such as Scheme) bind
names based on theixleal, compile-time, scope of definition. Mahisp programmers, especially
those vorking in artificial intelligence, hee made this characteristic of Lisp a vital element of their
programs, using it to write unconstrained self-modifying code. Such code utterly defies compile-time
analysis.

. Ordered lists. The primary data structure of Lisp is the list.déed lists are inherently sequential
structures; little parallelism is to be found in operations on a kse(#, perhaps, using techniques
such as that in section 7:1.3.2). The problem is simply than, i a particular list is being operated-
on in ways which do not depend on thestence of a particular ordering in the list, there is ay
guarantee that the ordering will not bramined later and hence be significant. A number of
researchers [SoD85] §H86] hae proposed specialized data structures which partially linearize
access to lingd lists, thereby alleing some parallelism,ut these areaery weak “patches” because
they create potential for parallelism in unpredictableyw; rather than reliably enabling parallete
cution where the programmeralgorithm naturally permits it.

These tw major dificulties can be remedied by addition of a single construa.c&¥l this construct an

ervironment®, after the same construct in PILE [DiG83], an amhed computeaided-instruction lan-

guage. Similar constructs are Snobd#ble and &k’s associative aay [AhK].

4.1.1. Poperty Lists

It seems to be the case that the main reason for writing self-modifying Lisp code isgatyplists
operate too sloly. For example, if one is bilding an epert system which may dynamically addwniles,
a common approach is to create, at runtime,vafoaction to @aluate each me condition. The name of
this function belongs to the same namespace as the functions already occurring in the program; iopefully
will not accidentally be the same as one of them, because, if it is, it will replace that function (thanks to

most recent binding). The benefit is that testing the condition witktoereely quick, since Lisp maintains

33. Although it was not discussed in the section 3:3, the original proposal for refined C [DiK84],
which was drafted before information about thew&NSI C standard as &ailable, included
the ewironment structure. It s dropped from RC because thevnA&NSI C standard
includes a function prototype syntax which, in conjunction with tistiag data declaration
syntax, is easily>@anded to be sfi€ient for RC.



-73-

a global name table and the binding of the condition function to its name is handled by direct lookup.

The corentional Lisp mechanism intended for this type of use is calledpeqy list. Using get-
prop and putprop, a pr operty list appears to beexy much lile a local name table, which may be ran-
domly accessed. Speeding-up operations on property listficultifhovever, because theare, in &ct,
ordinary linked lists and are occasionally operated on as such — if only getprop and putprop were
used to operate on them, and the compiler could be certain thatotis avays be the case, then there

would be no problem.

4.1.2. Ervironments

The nev refined Lisp construct is the inonment: a named, unordered, name table — a named
“scope’

Although names may be dynamically created and destrwithin an emronment — as themay in
cornventional Lisps global emironment — the data-accessvil@roperties of each item in anvinonment
may not &ceed the properties of thev@ronment as a whole. Therefore, in addition tovidimg a non-
serial data structure, anvéronment is a construct for associating routines with access rights to sets of data
within explicitly named scopes — aay of specifying ractly “how global” each piece of global data really
is.

Each emironment is declared asViag a name and a list of names in the glob&lrenment which
may be referenced from within thevinonment. Br example:

(environment 'wm)

(environment 'pm
(canmodify 'wm)

)

(environment 'peekatwm
(canread 'wm)

specifies that wm is anvemonment; pm is another einonment such that gnfunctions whose code is
placed in pm can only modify the associations of names within the winbrement; and peekatwm is an

ervironment whose functions can only read wm.

A function can only be called if the set of access rights it has to detsidus emironments does not

exceed the calles' rights; hence, in thexample abwe, a function which is placed in the pmvieanment



-74-

could call one which resided in the peekatwmimmment, it not vice ersa. In order towid subtle
problems inolving access permission ambiguities arising fromyawp of function code into the main
ervironment for gecution, only functions within a namedvwionment may be eated at runtime and the

must be gecuted diectly flom the emironment.

Although we hae not yet deised a specification of the syntax of refined Lisp (RL), it is hoped that
the follonving examples, using a soméat arbitrary syntax, will demonstrate the underlying concepts. Ref-
erences to efironments use { and } so that tlyecan be distinguished from both the global namespace and

ordinary (ordered) Lisp lists. A name this within the erironment that w ould be referenced as:

{that ‘this}

and its alue could be set to something by:

{that ‘this ‘something}

It is very much lile haring { and } imply, depending on the number ofjaments, either a special kind of

getprop or putprop. Referencing:

{that}

Also has a special meaning: it returns an ordinary Lisp property list containing the elements of that in an

unspecified order

There are, of course, other changes which must be made to uigjngbare similar to those dis-

cussed for FORRAN and C.

4.2. Refining Explicitly-Parallel Languages

If one wishes to obtain the benefits of transformability andiglgghbility associated with refined lan-
guages, bt the base language is characteristicakplieitly parallel, it becomes necessary to consider

refinements that can be made without eliminatingxdlieit parallelism.
Before discussing these refinements, it is useful to define what it means for a language construct to be
explicitly-parallel:

A construct is explicitly-parallel if and only if it specifies parallel control fiathrough code in
such a vay as to prohibit mechanical transformation, at compile time, into a functionally-
equialent sequential control fiothrough the code.



-75-

For example, in most languages which supportégter notation is notelicitly parallel. Gven:

AlL..U]=B[L..U+CI[L..U];

It is aways \alid to generate:

FORI1:=LTOUDO

T[] := B[] + C[l];
FORI:=LTO U DO

All] =TI

Any vector pression has a well-defined (although not necessarily straightinsequential representa-

tion which is functionally equalent.

For example, DOALL is a perfectly harmless construct if the language specifiexéuatien of a
DOALL must duplicate the result computed when a specific sequential interpretation is used. If the lan-

guage does not specify this, communication between parallel processes can cause interesting results:

DOALLI IN (L+1 .. U)
All] := A[I-1];

could copy the walue of A[L] into all the elements of A[L+1 .. U], or it could shift the v alues of A[L

.. U-1] into A[L+1 .. U], or it could do something mixing these interpretations. If code lik e the

above is permitted within a DOALL, and a sequential functionally-equivalent ordering is not specified as
part of the language definition, there is naywo determine the intended meaning of the construct. If the
intended meaning cannot be determined, it is clearly impossible to transform the construct and guarantee

that the meaning is presenl.

The same is true ofavious other specialized “parallel” constructs which are found in ANSI FOR-

TRAN 8x and similar languages — these constructs are parallel only if one wishes thengas such.

The kind of control construct which is wmadably, explicitly, parallel is the kind of construct which
permits communication between arbitrary processes at other than process creation/termination. These con-
structs are not, in general, able to be transformed into sequentigleqts: multiple process states must
be maintained. Of course, the parallelism can be simulat¢dhib is neither ditient nor helpful in mak-

ing the program delggable.

Message-passing and other general parallel control constructs causexit@spidich include:



-76-

. It may not be possible to determine what code wikive a mesga until the mesgg is actually
sent at run time Being unable to determine the destination of the messagesntide compiler
unable to determine thefefts the message will & — it thus preents the compiler both from
restructuring the parallelism and from aiding in agdiing the program.

. Timing relationships mayxast dependent on a particularteduling tace of the pygram, tut the
trace is not specified by theogram. An apparently lig-free program actually might be infested
with race conditions and deadlocksraisforming the program (or the gat machine) in anway
might cause these errors to swd. D presere equvalence, the compiler may V&to generate code
which carefully models the original machinevieanment, including relatie timing of all instruc-

tions.

To refine an plicitly parallel language without remimg the parallel construct, the approachesyv
similar to that takn to refine sequential languagest the aplicitly-parallel constructs remain in the lan-
guage. This results in a useful tool for detecting possiaée rconditions inxlicitly parallel code and, if
the program is correct, it permits the parallelism to be safely increased (by conculegation within

sequential chunks of the parallel program).

Ideally, the samedcilities for specifying data-accesswiavill be inserted in the languageytha little
more information is desired:

. In a situation where it cannot be determined at compile time what code willeecenessage, the
refinement is to state the set of functions (assuming each proeesges the code for a function)
which may recefe that message.

. Where a timing relationship implicitly res@s a race condition, the time coastt should be able to
be specified. This awld, incidentally solve the problem of writing real-time control soétwe which
must meet critical timing requirements. Assertions can be made about when the Fegeaution
will have reached one point reladito when it reaches another

These last tw points are currently just interesting ideas — further research is needed to determine if

and heov these modifications euld be vorthwhile.



This page is intentionally blank.

-77-



-78-

Compilation

Of Refined Languages

A refined language program is a sequential program. férdifrom an equalent base-language pro-
gram only in minor \ays, as outlined abe. By design, most of the dérences do not require that the
basic compilation technique be altered. The omigeptions are that in compiling refined language pro-

grams:

. Separate compilation may be easier to support (depending ongéelamguage),

. Interprocedural information is much easier to collect (since it is,fattefdirectly &ailable in the
function prototypes, etc.), and

. More precise aliasing information is readilyadable.

For this reason, the problem of compiling a refined language program ficteréfparallel code for a par
ticular taget machine can be considered as identical to the problem for arakguibase-language (dusty-

deck) program into &tient parallel code for the same machine.

Any of the techniques of [l’M72] [AIK82] [EII85] [Vei85] [KuS84] [Nic85] [KAI85] [ScK86], all
of which were deeloped to process “dusty deck” FDRAN code, could be used on refined language code
with equal or greater success. Greater succesidvbe ery likely, since a refined language program con-
tains more parallelism-ratant information than does a dusty deck. In each case, the resulting refined lan-
guage compiler wuld be virtually identical to the dusty deck compilsave for the minor dferences

which occur mostly in the ¥écal analyzer and parser

Beyond the benefit accrued from the added information in the code, a refined language compiler pro-
vides additional benefit in that it performs inpgocedural parallelization, and uses a unique method to tai-

lor code to the tget architecture.

The rest of this chapter presents aargien of the complete process of compiling a program written
in a refined language. Contutions of this material include the realization thatvflnalysis is flv analy-
sis (whether used for optimization or parallelization) and the gengahination of the compilemwhich

distinguishes between concurrgrietection and process packaging.



-82-

1. Owerview

As will become clear in the follwing sections, the compilation of a sequential program into parallel
code is nothing more complg¢han corentional compiler analysis and code im@ment; havever, the

penalty for nglecting an impovement isdir greater when a parallel machine is thgdar

Toward insuring that the tget machine is well utilized, our refined language compilers incorporate a
technique for non-deterministic process packaging ut-this does not complicate the compiler wrier’

task. Infct, the use of a non-deterministic packaging techniquesnafiting the compiler slightly easier

Taking this concept a bit furtheit can be agued that corentional compiler analysis and code
improvement ae mostly concerned with a particular kind of parallelism — a parallelizing compiler merely
generalizes this. df example, rgister assignment is a special case of the general problem of assigning data
to local memories of multiple processor machines; instruction scheduliregogipelines usy within a
single processor isewy similar to instruction scheduling tedp an entire VLIW supercomputeardy; code
motions used in caentional optimizing compilers might not be profitable on parallel machinegither

the code motion or its werse usually is.

In summarythe “big picture” of a parallelizing compiler is that of a wemtional optimizing com-

piler, but with a number of things re-named:



-83-

isource program

A: lexical analyzer
tokens
B: parser
phrase structures
intermediate
C:
code generation
tuples (or trees)
D: flow analysis
flow/dependengcgraphs
E: concurrency detection
potential parallelism
F: process packaging
process structure
_ target language
e code generation

ltarget language code

Figure 4:1: Owerview Of Refined Language Compiler Oganization

2. A: Lexical Analysis

The structure of the Xécal analyzer of a refined-language compiler is,vierg respect, as it ould
be for the corresponding base-language compilérere may hovever, be a fev nev keywords and/or

symbols — verds like PARTITION, IN, OUT, etc.



-84-

Since a refined language is supposed to function in as similay aswossible to its base language,
lexation rules are consistent with the base language.ed@mple, if base-languageykvords are reseed

(may not be used as names for programmer objects), then the refined-lareyuaigdkare also resexd.

3. B: Syntax Analysis

Syntax analysis, or parsing, of a refined-language program is performextity ¢he same ay used
to recognize the syntactic structure of a base-language program. There simplyarea ¢enstructs in

the refined language.

These n& constructs necessitate minor re-design of the congpigrhbol table. This is partly due
to the fct that high-leel computer languages are actually cehtensitve; contat-free parsers are con-
structed to use symbol table information to (semantically) resble contet-sensitve grammatical struc-
tures. fer example, the dierence between a subscripted array reference and a function call TRAGIR
is simply that an array nameowld have to hae been declared as such; the refined-language compiler may
have to distinguish these from a reference to a partition element. A second reason the symbol table must be
modified is that information garding eplicitly stated data accessyitanust be preseed for intermediate

code generation and error checking.

4. C: Intermediate Code Generation

Starting with the generation of intermediate code, there are significkredides between a sequen-
tial-code-generating optimizing compiler for a base language and a parallelizing compiler for a eafined v
sion of that language. More precisdlyere are important parallelism-relatedygrmachine dependencies.

For example, consider the assignment statement:

A=B

Is there ap parallelism in this? At first glance, the answer is no: “Avergia copg of B's value” An inter-
mediate form in whichariable assignment is a prinviéi operation wuld also gidence no parallelism.

However, suppose the tget machine is capable of using figgained parallelism (e.g. it is a VLIW).

Representing intermediate operations at a-finained lgel, the single statement is readikpeessed as:



-85-

tl1 ~ Address(A)
t2 ~ Address(B)
t3 ~ Memory(t2)
Memory(tl) ~ t3

which is parallel-gecutable: t1 ~ Address(A) may be e xecuted in parallel with either t2
Address(B) ort3 —~ Memory(t2). The le vel at which an algorithm is specified in the internal form

is the finest grain parallelism for which parallel code could be generated.

It can be agued that the lwest-level intermediate form wuld sufice for ary target machine, Wit the
time required to analyze and re-combine too fine-grained intermediate operations is ypecfubithary
large-grained tayet machines. The compity of the compilers taget code generation is also magnified

by a mismatch of intermediate form andyitrmachine.

In addition, the lavest-level intermediate form depends, to sommeeat, on the tayret machine model
— there isnt a single lavest level, but mary which differ because of machine features such as the memory
hierarcly, choice of storage management technique, etc. In theeakample, which appears to be at a
very low level, it is still possible that the address ofasiable cannot be computed using just one intermedi-
ate code instruction. It mafor instance, be necessary to obtairagables address by adding arfst to

the \alue of a frame pointer

5. D: Flow Analysis

Throughout the literature on dusty-deck parallelization, most discussionsvadridysis in support
of concurreng detection hee emplged non-standard terminologgrimarily as a consequence of describ-
ing flow analysis on HLL constructs rather than on an intermediate formx@onme, [Kuc78] describes
the analysis on HLL code). The standard terminology used to descrbaridysis for the purpose of
cornventional optimization was lagely ignored. In ay case, the diérences in terminology are unimpor
tant; there is no inhent diference between fle analysis used for ceantional code impnement and that

used for concurrenadetection.

It is worth noting that it isi’always necessary that completenflanalysis be applied — imdt, it is
very rarely useful to perform completevil@nalysis. Flar analysis is not an end in itself; analysis need be
done only if the information it produces is vital to generatiriigient code for the tget machine. &r
example, the analysis used for trace scheduling of VLIWSs [Fis84] is essentially the basic-block-oriented

value-numbering scheme proposed in [CoS70] and repeated in [AhU77]. The model of parallelism used by



-86-

[Fis84] [ElI85] cannot recute control flar statements in parallel, hence morevpdul flow analysis (that
considered the control flostructure in general) euld not result in significantly better parallel code — it

would be a waste of time.

When code generation requiresaflonformation spanning lger rejions of the program than a basic
block (or trace etension thereof), results are not particularly serssitd the choice of techniques and, if
minor \ariations in the warst-case performances of tharious techniques are ignoredyatonventional
flow analysis techniqgue may be used to produce the needed information. The most commonly discussed

techniques are:

. Linear Nested Rgon analysis. This is a straightfoand etension of the basic bloclkalue number
ing scheme, which traces thewviloof computed alues across basic block boundaries. Certain
branching structures will cause the algorithmaib o detect some informationubsuch adilure is
never fatal. This technique as proposed in [CoS70].

. Set Based analysis. Aho and Ullman obserthat a alue can be carried across a control structure
only if it is stored into a ariable. Using this insight, tigeproposed (in [AhU77]) that only flo of
variables, not computedlues, should be traced across control structures apdi¢heloped a tech-
nigue for iterating wer all paths in a program graph until the setarfables going into (IN) and out
from (OUT) each basic block ha stabilized. Unlik Linear Nested Rgon analysis, this technique
results in theoretically perfect answersyt it is blind to duplicated intermediate computations
because thenever are associated withariables. It is clear that by creating “pseudariables” to
hold each intermediatealue this flav can be eliminated; see [AnC82]. The first RC compiler uses
this technique [Ste86].

. Structued Contol analysis. The rules upon which Linear Nestedyiee analysis is based can be
reduced to a purely syntactic form, piged that the language uses only structured control constructs.
This analysis [Wd83] is &r better knen than either of the abe two techniques and has been
widely published. Recentlyspecification of flov analyzing compilers using attdted grammar
compiler compilers has become a “hot” research topic: virtually all of these cowymibgiiler gener
ated flav analyzing compilers perform the analysis by this techniquew &halysis of single-assign-
ment (restricted side-feict) languages is most often performed in thés/wThe first C \ersion of
PREFINEUSeS this technique.

Whichever technique is used, it is usually beneficial tawflew analysis as a twstep procedure:
(1) Perform analysis incrementally on the elements of each basic block and

(2) Determine what information crosses each basic block boundary

Since the techniques and terminology are welWkmowe will discuss fla analysis no further —

except to apply its results. In what folls, we will use the terminology of [AhU77] to describe the results



-87-

of flow analysis**

It is important to mention that we consider the concept of dependence to be a refinememneof con
tional flov analysis, essentially making Woinformation track portions of compound-typedriables®
(sets of array elements as opposed to the array as a whol&xy Arude implementation of this concept
appears in [CoS70], pages 324-325; more recemtlch progress has been made in imimg the preci-
sion with which references to portions of data structures are recognized and in solving linear recurrences
which often result from inded array references within loops [All83] [Bur84] [BuC86] [Ban86] [AlI86].
Dependence analysis also yides terminology for discussing data references within a loop where itera-
tions interact with each other; this terminology is particularly useful in discussing parallelization of FOR-
TRAN DO loops. In summarwhile dependence analysis has become a field unto itself, the cuorént w

treats it as an intgal part of flow analysis andsaids relying on its specialized terminology

6. E: Concurrency Detection

Concurrency detection, whose fundamental principles are discussed in Chapter 5, is the first logical
step in parallelization of code. It determines what coulddeewted in paallel and what kinds of parallel-
ism are present. ofgenerate good parallel code for g&machine, heever, the compiler must go a step
further: it must determine what is wortkeguting in paallel and it must pick the particular process struc-

ture which will be used to achvie that parallelism.

Notice that concurreyadetection is fundamentally machine independent.

7. F: Process Rckaging

Process packaging is the procedure by which a graph resulting from #ioalysis is partitioned,
according to the results of concurrgrdetection, into the specificgiens that will be coded so that the
may be ®ecuted in parallel on the gt machine. Unli& concurreng detection, process packaging is a

highly machine-dependent procedure.

Process packaging is a better term than “graph partitioning” becauseei lggen the possibility

that constructs might be added to a partitioned graph in order to encapsulate each pypoesly, dode

34. Surprisingly although the methods téf, nearly all compiler te¢books agree on the basic-ter
minology used to describe floanalysis for the purpose of code impEment/optimization.

35. Typically, this is not a primary concern in a refined-language comlace the pgrammer
can eplicitly partition a compound-typedaviable to create names forygoortions of interest.
It is critical to good parallelization of “dusty deck” FODRAN code.



-88-

for each process is packaged with the operations which support process creation, termination, synchroniza-

tion, and communication.

In most cases,ery maiy very small processes could beseuted in parallel. Heever, it is very rare
that the taget architecture can malefective use of all the potential parallelism in a prograror fost
target machines, groups of potentially-parallel processes must be packaged togetherdachajenerated

process an appropriate size, and type, for tlyetamachine anronment.

There are tw basic approaches to process packaging: deterministic and non-deterministic. Because
work on the first refined-language compilers has dealt with code generation for MIMD computers, the cur
rent work refers to a stream of instructions which are toXee@ted in a specified sequence asoggss no

matter what the tget machines oiganization is.

7.1. Deterministic Process Rckaging

The earliest, and most commonly used, approach to process packaging is based on a deterministic
search for ay of a set of pre-defined preferred paralbed@itable forms. The forms are searched in order

of decreasing “alue’; hence, the first applicable transformation is presumably the best.

For example, most of the ark presented in [M72] [AIK82] [K uS84] [KAI85] focuses on transfor
mation of dusty deck FOFRRAN programs into aectororiented &tension of FORRAN. When a DO
loop is encountered in the source code, a specializeg{tawachine dependent) kind of concurngdetec-
tion is performed on the loop badyrhis results in classification of the loop based on the relationship of
one iteration of the loop to thexigloop-carried dependences) and on the interrelationships of statements
within the loop (true dependences).v&i the classification of the loop and its contents, the corresponding

vector operation(s) are selected.

Since all mappings of loop classification intector operation(s) are kwa to presere the meaning
of the original construct, correctness is implicit in the set of transformations considered. The preferability

of using the ector operation(s) is simply assumed in most ¢ases

Because only a relatly small number of specific forms of parallelization are sought and only
within DO loop bodies, reasonably good code is generated with/edyaliitle effort — relative to the dbrt
required to generate good code for morgilfle parallel machines such as MIMDs. This permits more

compile time to be spent on sophisticated encodingeatov operations. df example, Mini-KAP AF

36. [ScK86] and [WI86] are &ceptions: seeral \ectorized forms arevaluated and the best of
those is generated.



-89-

[KAI85] will recognize when a DO loop is finding the maximum or minimum of an aaag will trans-

form such a loop into aector maximum orector minimum operation.

Finergrained parallelism can also be supported deterministically: gaodpes are the tree-height

reduction techniques\gn in [Kuc78].

In general, deterministic packagingsks best for machines that can onkeeute highly symmetric
and relatiely static parallel structures, such as SIMDetar processors, and systolic arrays (discussed in
Chapter 6). br these machines, there are usually onlywagdessible parallel»ecutable forms, hence the
relative costs and benefits of thefdient forms can be cast into adiiksearch order for parallelizations,

which checks the best first and accepts the first match.

7.2. Non-Deterministic Pocess Rckaging

An alternatve form of process packaging, one more suited to architectures whickptait more
complex forms of parallelism, is non-deterministic process packaging — ély¢amuned search of the

space of all possible packagings. (Chapter 8 discusses our gtaitrito this technology

Non-deterministic packaging is desirable only when the number of viable aiterpatiallel-ge-
cutable forms is lgre and/or the relatt merits (costs) of dirent parallel forms cannot be estimated with
reasonable accunaainless the features of the parallel code are carefullijuated for each alternadi.
Dynamic parallel machines (MIMDs and dataflmachines) and fine-grain machines which do not require
large-scale symmetry (VLIWS, pipelined computers, and some array processors) are ggtsddanon-

deterministic packaging. (Further discussion of these machines appears in Chapter 6.)

Those taget machine characteristics which raatlon-deterministic search attraetiare such that the
relationship between specific source code constructs and the parallel foymeaheansformed into is
complex. Non-deterministic process packaging canneestme in concurrencdetection by ignoring a
portion of the source program, because dguldn’t knonv what to ignore. Hence, analysis must be- per

formed on the engrprogram.

However, compilation using non-deterministic packaging can be sped up by performing hierarchical
analysis [DiK84] [Nic85] [SkG85] [¥i85] [SaH86]. Initially relatively lamge-grain parallelism is sought
and then parallelism atver-finer-grain levels is considered. This limits the searchfisigintly to male

compile-times comparable to those obtained with deterministitorizers [Ste86].



-90-

On machines which are entirely fine-grain, such as VLIWSs, this dogsite prune the analysis
enough, bt artificial constraints can be imposed on the fine-grain re-arrangement of the code so that the
search space is nawed. Trace scheduling [Fis84] emplgs just such a constraint: only code on the most
frequently e&ecuted traces through the program Xareined in complete detail, whileverfrequeng

paths may not be analyzed at all.

Process packaging is justdiening to be perceed as a fundamental problem in automatic paral-
lelization; when nearly all parallel machines weeeter or array machines, only avf@arallel forms were

of interest, and picking the right formaw far less dificult.

8. G: Target Language Code Generation

Fortunately once process-packaging has been performed, the remaining machine dependent prob-
lems (at the beel of generating code for each process) are identical to those encountered in sequential

machines. This phase of compilation is the same as in a compiler for a sequential machine.

The only diference, and it is not wersal, is that memory allocation anceeutable code module
creation can be more comgplthan for a sequential machine. This is due to the need, in some machines, to
assign data and code to positions withiplieitly segmented memory systems — binding processes to (vir

tual) processors at compile time.



This page is intentionally blank.

-91-



-92-

Concurrency Detection

Concurreng detection is the method by which a compiler can determine what portions of a program
may be gecuted simultaneously without the possibility of changing the meaning of the program. This
determination can be made whether the source program uses sequemidicivly gparallel control flav
constructs. If the source program uses sequential control, concydetection determines Wwathe codes
execution could be parallelized without changing the functionality of the program. If the source program
uses parallel control, concurrgndetection determines bothwdhe codes parallel structure can be safely
transformed (into a parallekecution structure other than thavenm eplicitly) and where race conditions

may arise within the unmodified source progmasttucture.

In this chapter the machine-independent theoretical foundations of concyrrdatection are
described in terms of ceentional, uniprocessariented, compiler fl analysis and optimization. This
description concentrates on the analysis afgular code — code which contains arbitrary sidéeefs and
control constructs — lgely ignoring parallelizations of the iterations of loops. Loop iteration paralleliza-
tions are discussed briefly in Chapter 6 and in-depth in Chapter 7, rather than included here, because the
fundamental approach to loop parallelization is not consistent a@oess/taget architectures. Since the
discussion of loops is postponed, the reader may wish to consider source program loops as being com-

pletely unvound prior to the analysis in this chapter (although this is rarely done in practice).

Many other researchers V& expressed rules for concurrgndetection [Kic78] [Wed83] [Omo84]
[Vei85] [AIB86], havever, we beliee the current presentation to be unique in its use afectional termi-
nology, separation of machine-independent from machine-dependent analysis, incorporation of analysis of
code usingxplicitly-parallel control constructs, and in its generality (the rulesrgapply to parallelism at
ary granularity’ and completely specify the mechanism whereby the granularity of analysis may be

changed).

37. Granularity refers to the “computational content” of each atom (graph node) in the analysis.
Fine grain analysis ould find potential parallelism among imitlual intermediate-code
instructions, whereas lge grain analysis might find parallelism only among atoms represent-
ing entire subprograms.



-94-

1. Terminology And Notation

In order to put the notions of concurrgraetection and process packaging on a more precise founda-
tion, it is useful to define the transformed representation of the source program to which the analysis is
applied.

The representation used is actuallyydrid graph representing control itdbetween nodes, where
each node represents a basic blogkemgias a BG, as used in caentional optimizing compilers [AhU77]
[AhS86]. Hawvever, the graph structure itself is not vital in concursedetection — ratherconcurreng
detection operates ongiens of intermediate code, andvil@analysis summary information pertaining to
them, which are deréd from the fabrid graph. Br this reason, detailled discussion of tlybrid graph
structure is wided. Instead, concurrendetection is described in terms of detecting potential for race-
free parallel recution of egions® (sets of intermediate code instructions) annotated witlv imalysis

summary information.

In this section, the intermediate form and vald terminology are introduced.

1.1. Intermediate Form

For this presentation, each instruction in the intermediate formpieegsed using a tuple notation

similar to that of [AnC82]. Consider the folng fragments of a C program:

38. A precise definition of igion appears later in this chapter



if (d) {
b=b*c;
}else {
a=f()+b;
}
c=a+hb;
f0
{
g=a+te,
return(g);
}

Listing 5:1: C Code For Concurrency Detection Example

After parsing and translation into intermediate code this might become:

-95-



-96-

. Load(#b)
: Load(#c)
: Mul(1, 2)
: Store(#a, 3)
: Load(#d)

ga b W N P

. Load(#b)
: Load(#c)
: Mul(6, 7)
: Store(#b, 8)

© 00 N O

10: Call(#f)

11: Load(#b)

12: Add(10, 11)
13: Store(#a, 12)

14: Load(#a)

15: Load(#b)

16: Add(14, 15)
17: Store(#c, 16)

100: Load(#a)

101: Load(#e)

102: Add(100, 101)
103: Store(#g, 102)
104: Load(#9g)

105: Return(104)

Listing 5:2: Tuple Code For Concurrency Detection Example

where the number which precedes each operation is used only to refer to the tuple — these numbers do not
imply execution order Blank lines separate the basic blocks (who#e33 are gpressed in the pattern of

references to tuple numbers aguanents of each tuple within each block):



Basic Blocks fer Concurrency Detection Example
Basic Block  Tiple Numbers Exit Aa(s)
A {1, 2, 3,4, 5} rué(5) - B, else C
B {6,7, 8, 9} D
c {10, 11, 12, 13} D
D {14, 15, 16, 17}
E {100, 101, 102, 103, 104}  Return

The corresponding control flograph is:

-97-



-08-

False(5)

Figure 5:1: Control Flow For Concurrency Detection Example

where block E is dran within block C to stress thedt that its contents are conceptuaiiynot actually

contained within block C.



-99-

1.2. \ariables

To simplify the discussion, we refer to an atomic namedagtocell as a ariable. In fact, if opera-
tions on indvidual members of aariable of a compound type (an array, struct, or record) appear in
the code, it is usually desirable to treat each member of the compound-tyaevas an independent
“variable” (Each result from an intermediate computation is also typically best treated as an independent
“variable?)

The complications introduced by this consideration redatib subscripted array references are well-
known and hae been healy researched. Dependence analysis [All83] [Bur84] [BuC86] [Ban86] [All86]
distinguishes sets of members (array elements) based on recognition ofamgipdétern; in the current
work, it is assumed that such techniques will be used where appropri@imilar complications arise in
aliasing of unrestricted multivel pointer operations [AhU77] [AnC82] [AhS86] [Ste86]. The problem of

disambiguating references to members of structs is Wially solved.

Although, for these reasons, it may be necessary to applgfaseeral sophisticated algorithms to
derive the optimal set of “ariables” within a program, it is alays possible to define an acceptable set of
“variables”. or example, if member references are all grouped together as references to the complete
structure, the concurrepaletection algorithms @én here will function properly —ub some parallelism

may not be recognized.

In ary case, once a set oanables has been defined, concuryedetection can be performed in
exactly the same ay, no matter he this set vas denved. In the g&ample gven in Listing 5:1, since only

variables of simple types are used, choosing a setofhles” is easy — a, b, c, d, e, and g.

1.3. Flov Analysis Terminology

Since it is relatiely corvenient to do so, this discussion enysidhe terminology of camntional,
sequential, compiler fl@ analysis, as per [AhU77] [AhS86]. These terms are use, def, D-U chain, and U-
D chain. Two nev terms, def closue and use closwg, are also defined —ubthese are simplyxeensions

of the concepts of D-U chains and U-D chains, respslgti

39. Since refined languages permit the programmexpbaitly create such sets (via partitioning),
dependence analysis is not as important asulavbe if comentional language programs were
the input to the compilerWe beliere that dependence analysis is bestveid as a comple-
mentary technology to language refinement — ivigles a mechanism for mechanically con-
verting “old” code into its refined-language eléent.



-100-

The two most basic terms are def and use:

Definition 1: Def
A def (definition point) is an operation which temporarily bindsadue v to a name n.

Definition 2: Use
A use is an operation obtaining thalue v which is bound (at that point ixecution) to a particular
name n.

In terms of the tuple code in Listing 5:2, a line of code of the form:

number: opemtion(arguments)

where opeation is neither store nor call, constitutes a use of the value associated with each name in
the list of aguments and a def binding the computedue to the temporary hame which identifies this

tuple. Atuple lile:

number: Store(place, value)

constitutes a use of tha@lue associated with value and a def binding the name place andltreewalue.

Finally, a tuple lile:

number: Call(ar guments)

represents the summary of all uses and definitions occurring within the subprogram being called.

It is important to note, leever, that the abee definitions specify that a use is really a use of a def or
set of defs — not a use of a name. In otherds, a particular use, u, of thalwe bound to the name n does
not necessarily v ary relationship to thealue bound to n by a specific def; only defs which could be the

last def of n gecuted beforex@cuting the use u are significant.

This distinction is made because, forample, when collecting summary loinformation for a
region of code (such as a function body), a useaniable n is a use in the summaryvilanformation if
the use may be a use of a def appearing outside ofgimareWithout this distinction substantial parallel-

ism may be lost.
The concepts of D-U and U-D chains embody the information directly relating defs and uses:

Definition 3: D-U Chain
The D-U Chain of a particular de¥which establishes the binding n-v consists of a set containing the
def dand all uses of thealue bound to n where, for each use u, theiste at least one control flo



-101-

path fromdto u such that no other defs of n are encountered along thaiploh @reades u).

Definition 4: U-D Chain
The U-D Chain of a particular use u of thaelue bound to n consists of a set containing the use u and
all defs of n such that for each dé&fu is in the D-U chain ob.

Hence, for gample, the D-U chain of the def of a in tuple number 4 of Listing 5auld include both the

use of a which is summarized within tuple 10 (which is actually the use in tuple 100) and the use of a in
tuple 14. The U-D chain of the use of a in tuple 1duld include both the def of a in tuple number 4 and
the def in tuple 13.

Notice that there are wseparate reasons that the U-D chain of a particular use might hold more than

one definition, although only the first applies in thevabeample:

(1) The use may follr a conditionally recuted definition of theariable in question or

(2) The use may refer to anable whose identity is not precisely knmoat compile-time; forx@ample,
if the use obtains aalue through a pointer reference using the poirdgakle p and p may be point-
ing to either ariable a or b, then all definitions of a, b, or 3 that reac the use wuld be in the U-
D chain of the use. In general, aliasing ambiguitiesemiakecessary to treat each def (or use) as a
set of possible defs (or uses), one for each of the possibly-aliased names.

In addition to these traditional terms, it is profitable to defxtergled ersions of D-U and U-D

chains:

Definition 5: Def Closure (D*)
The def closue, denoted D*, of a particular défconsists of the D-U chain ad [the D-U chain of
each def which establishes a binding where #ilgevused in the bindingas either in D* ofd or
resulted from a computationviolving at least one use thaawra member of D* ab. Informally, D*
of d consists of the ded and the set of all subsequent uses and defs which may depend onxgrior e
cution of the de®.

Definition 6: Use Closure (U*)
The use closue, denoted U*, of a particular use u consists of the U-D chain of u [(the U-D chain of
each use which is either used to produce #heesfor a def which is an element of U* or isatved
in a computation whose result is used to produce #hgevfor a def which is an element of U*.
Additionally, each use which isyolved in selecting a fle path applied by D-U chains within U* of
u is also a member of U* of u. InformallyJ* of u consists of the use u and the set of all uses and
defs which may hae to be gecuted to produce th@le which is used in use u.

these essentially embody the concept of closure of a D-U chain (for D*) and of closure of a U-D chain (for

U*). Hence, for @ample, D* of the def of a in tuple number 4 of Listing 5:2wuld include tuples 4, 10

40. The notation is bormeed from the C language and represents indirection through the pointer p.



-102-

(summarizing tuples 100, 102, 103, 104, and 105), 12, 13, 14, 16, and 17. U* of the use of a in tuple 14
would include tuples 13, 12, 11, 10 (summarizing tuples 105, 104, 103, 102, 101, and 100), 5 (for control

path selection), 4, 3, 2, and 1.

1.4. Regions

Individual tuples (and the uses/defsythmply) can be considered to be the “steps” of the algorithm
which actually impose constraints on parallel orderingwé¥er, as mentioned in the gmning of this

section, it generally is not desirable to parallelizeviadial steps, bt rather to parallelize lger raions.

Let:
R={r,r,. ...}

be a partition of all intermediate code tuples which contains P partition-elements, henceforth called
regions.

Any partitioning which separates single-control-entry single-conkiblsebgraphs isalid, as is an
partitioning which can be described in such ay\if the graph is modified by a sequence alidvcode
motions (as used in ceantional optimizing compilers [AhU77] [AhS86] [Die84]). This graph-based con-
straint on alidity of a partitioning is essentially requiring that region can contain tuplesdm within a
graph cycle (loop) unless either the cycle is completely contained withiegiloa or the egion is com-
pletely contained within the cycle.

It is possible to specify the characteristics of each partion-element using only information summariz-

ing the uses and definitions within eacbioe r;, rather than directly referencing all the widual compo-
nents of - a particularly useful technique when analyzingioas which contain function or procedure
invocations. Summary information for thegien r; is the set of uses and defs which are needed to describe
r;’s interaction with other ggons — a&actly as discussed for the summary information about a Call tuple.

An appropriate set can be found by initially including all uses and defs withingiloa,rand then eliminat-

ing those which are not pertinent, as:

. A use which appears within a particulagien should only be represented in the summary informa-
tion for that rgion if it is a member of a D-U chain whose definition is not also within tjainme



-103-

. At most, only one definition and one use pariable need be represented in a particulgiores
summary information.

Only information about lmken D-U dains is needed.
Hence, if one wished to create @imn which incorporated the entire body of the function f from
Listing 5:1:
g=a+te;

return(g);

although this code contains a use of thdable g, the summary informationowld exclude that use. The
def which is used in the use of g is a definition which also appears within tfimreBecause the sum-

mary information depends on kmtedge of D-U and U-D chains, it is fledependent?

To express constraints orxecution order of igons, we define a partial ordering, denoted “<” on R

as follavs:

ri<rj

Iffr ; must be gecuted beforejr

In addition, f < T implies H>T

2. The Sequential Rules

The rules for detecting potential parallgeeution among programg®ns (r5) are straightforard
and fev in number Of course, the amount of detectable parallelism is highly dependent on choice of the
set of rgions, created by partitioning, upon which concuryathetection is performed —ubthat is a sepa-

rate issue, relating mostly to the parallelisraikable in the taget machine.

2.1. D-U Chaining

41. Other research ffrts (for xample, [BuC86] [T186]) have proposed flo-independent forms
of summary information —ut such an approximation clearly yields inferior results. Extend-
ing flow-independent summary information to benflsensitve in the abee sense is relagly
simple.



-104-

Rule 1:
For ary r; and E,

if there &ists a deb of the variable n such that
ol i and rj contains a use u [D-U chain ob,

thenri<rj.

This rule is all that is needed if the mapping afues onto names is one-to-oneor Eoncurreng
detection within a basic block, because it is usually easy to optimize a basic block so thktethe vame
mapping is one-to-one, this rule is oftenfigignt. In functional or single-assignment languages, the same
property is gtended to encompass entire functions, hence concyrdmiection at the functionuel is
driven by this rule. Using the dataflocomputation model, this rule gerns concurrenc detection

throughout the entire program.

2.2. Killed Definitions

Rule 2a:
For ary r; and 1
if there eists a de®) of the \ariable n such thad [ ; and
there aists a deﬁJ of the variable n such thazﬁJ o P

then either I< rj or rJ. <r,

Rule 2b:
If Rule 2a applied and
there &ists a use ILSUCh that

u; [D-U chain of & and

u; O 5, or,

there aists a use JLBUCh that

u; [D-U chain of dland

u; N P then if

((uj (D*of 4)or (u [U* of 51)),

thenri<rj.

This two-part rule is the ¢y to concurreng detection across basic block boundaries inveotional lan-

guages.



-105-

Further if only the first part of this rule applies and it yides the only constraint on parallelegu-
tion of the rgions in question, parallekecution may be obtained by allocatingotaeparate, coxesting,

areas for the ariable n. This is not alays beneficial, hwever, because the menames, pand n, will

impose that ancorvergence of flav which causes the twdefs to meet must be modified to create a/cop
of one name walue into the otherso that a single name can be used to refer toghe vgardless of

where it vas computed. The cost of this gapaking may gceed the impreement using parallelism.

2.3. Synthesis

Detection of potential parallelism within sequential code amounts to computing the relationy’<”; an

two reggions s and r,, for which neitherjr< rnorr, <r;, can be wecuted in parallel.

If the relationship betweer} and 1, is permitted to be eitherj KT orm>r with no other constraint
(as might be the case of rule 2a applied), the compiler may arbitrarily choose xathéiom order
If either [<rnoorr <r, executing the rgions ’ and r, without synchronization (without imposing

a sequential order) could result in races.

3. The Rarallel Rules

There are tw separate reasons for concurgedetection to be applied tax@icitly-parallel code: to

obtain greater parallelism or to confirm that tkisting parallel structure is race-free.

3.1. To Expose Rrallelism

The rules for concurregadetection in sequential code can be appliedkpmose additional parallel-
ism within eplicitly-parallel code. Additional parallelism can often be found becaxgkcily-parallel
languages tend tafor coarse-grained parallelism, whichvea lage chunks of sequential code between
explicitly-parallel operations. #&uallelism within these chunks may be detected using the technique

described abee.

The only clarification necessary is that the partitioning ofxguticitly-parallel progranms graph into

regions must insure that eaclyien does not contain internal synchronization operatféf®r purposes of

42. The ception is that it is permissible to synchronize with a child process whose lifetime is
contained within that of the parent process. Essentihlly is because the child process can
have its efects summarized much as we did for the call in Listing 5:2.



-106-

this analysis,agions can syrtoonize only on their edg: ceation and termination.

3.2. To Detect Races

To determine the safety of paralleleeution according to arxplicitly-given structure, the same rules
are applied. Haever, instead of finding a partial ordering, we are concerned with finding violations of the

partial ordering.

Given a graph generated from axpkcitly-parallel program, an additional possibility arises in the
second part of the second sequential rule:
Rule 2c:
If Rule 2a applied, bt the language specified thagiens r. and r, were to be gecuted simultane-
ously (in which case the concepts of D* and U* used in Rule 2b are not readily applied), a potential
race conditionxsts for the ariable n.
Notice that an “gplicitly-parallel” construct which has a well-defined sequential interpretation cannot

cause this difculty.

4. Summary

The discussion of concurrgndetection gien abee is based entirely on D-U and U-D chaining; as
such, we beliee it is unique. The meconcepts of D* and U*, briefly introduced here, are also fundamen-
tal to more compbeprogram transformations, as in section 7:1.3.2. Fyriebelige that the concept of
parallelizing rgions, rather than indidual instructions or properly-nested subgraphs, is a significant con-

tribution.

In this chapterhowever, we hae given \ery little direction as to he region groupings should be
chosen: the choice ofgmns is highly machine dependent. Chapters 6, 7, andv@primsights into this

machine dependent task.



-107-

This page is intentionally blank.



-108-

Computer Architecture

Throughout the currentavk, mary references are made to the strong relationship between compiler
optimizations and the structure of agetr machine. In this chapfeve present brief descriptions of some
of the more popular general classes of computer architectures. Each architecture is first defined, then its

impact on the machine-dependent design of an optimizing/parallelizing compiler is discussed.

Experience in implementing parallelizing compilers haswshthat parallelization is machine depen-
dent in surprisingly drasticays. Ideallywe wish to create a kind ofXpert optimizer/parallelizegenera-
tor” which would accept an architectural description (including implementation-dependent information
such as instruction timing) andowid generate an optimizer/parallelizer appropriate to that modding-

this, the current wrk presents our basic insights as to what tyenkachine-dependent concerns might be.

The architectural features which demand the most complechine-dependent compilation tech-
nigues are those refent to machine parallelism.oFexample, instruction setaviations lile stack code; 1,
2, or 3-address code; accumulatetack, rgister or memory-based instruction sets; HLL-oriented code;
and so forth hae little impact on the compilex’basic structure because most instruction agatons are
reasonably-diciently coded without resorting to compl8ow analysis and |lgie-scale code transformation
[Die83]. Even where such sophisticated measures aentdtkhas been possible to soimaly of the prob-
lems in relatiely portable vays: [LeC79], [Gan80], and [Cho83] discuss the construction of portable code

generators/optimizers.

This is not meant to imply that sequential code optimization is Bynsasure a sobd problem.

Rather it is highlighting the fundamental éifence between optimization and parallelization:

. In optimization, aw little insight can modestly impve the code, it

. In parallelization, unless the insight encompasses at least a coupléoatria the code, no speedup
can be obtained.

For example, suppose a compiler igaenining a rgion of code which contains a reference through a

pointer p, which, at first glance, may be pointing ay ari a number of &riables including a and b. Fur

ther suppose there is anothegiom of code which references both a and b. Simply determining that p

could not be pointing at a pvides an opportunity for optimization (progdipn of a’s value across the



-110-

pointer reference, placement of a in aister etc.). Havever, unless the compiler could also pecthat
indirection through p does not reference b, thetmwgions could not be parallelized. Thisaenple used
insights based on concurrgndetection, bt the same importance is associated with the highly machine-

dependent insightsynlved in automatic parallelization (parallel machine ECFs).
Parallelization is an all-enothing-at-all @me.

The parallel architectures which we describe are: SISD, SIMD (includintpiand Array), MIMD
(including Dynamically-Scheduled Shared-Memory MIMD, Hypercubes and Non-Shared-Memory MIMD,
VLIW, and Dataflar), and Pipelined and Systolic processors. This is not meant to be a compeekensi
It is impossible to specify the precise impact of all architectures on compiler optimization/parallelization

design, lot the discussion loosely wers the majority of common machine structures.

It is important to note that we are not criticizing or trying to imprthe architectures in the folle

ing sections, bt merely describing e the best performance can be obtained for each type.

1. SISD

SISD means Single Instruction stream, Single Data stream. In obheés,va SISD is a ceantional,

sequential, computer:



-111-

CPU

Memory

Figure 6:1: SISD Architecture

CPU stands for Central Processing Unit — in the diagrams of multiprocessors, there is more than one
such unit, hence each is referred to as a PE, or Processing Element (although each PE might be identical to

the hardvare labeled CPU in the diagram abp

The line which connects the CPU and Memory has become commoniy lasothe “bn Neuman
Bottleneck;, since all instructions and data must pass through it to be acted upon. This structiee anak

number of optimizations particularly important:

. Optimal rgister usge, value popagation. Since rgisters (and caches) mide a mechanism for
avoiding the bottleneck in referencing memoayprimary concern in generating code for a SISD is
allocation of as much data as possible ingisters (and placement of code to create as high a hit
ratio as possible for caches)alWe propagtion permits the compiler to recognize wheralu@ can
be obtained from a géster instead of fetched from memory

. Common suberession and dead opetion elimination, constant foldingode motions whiicreduce
the pected recution fequency of instructions (du@s emawing code fom loops). These opti-
mizations reduce the total number of operations which muskéeud, hence, the program will
execute aster



-112-

There are certainly mgother optimizations which can play a major role in generationficfesft
SISD code, bt most of them are easily managed withoutvflanalysis. Br example, the choice of
addressing modes to be used within instructions is often importarit,i® typically \ery machine-depen-
dent, \ery localized in the code generatand not of particular interest to us since it has little to do with the

issues which are important in terms of sequential vs. paraieLigon.

2. SIMD

SIMD means Single Instruction stream, Multiple Data stream. Such a machingecateeonly a
single instruction sequenceayttihe operations can be performed on ynsgparate pieces of data simultane-

ously A block diagram of a typical SIMD machine looksdik

CP Mem

Mem1 Mem2 Mem3 Meml\I

Figure 6:2: SIMD Architecture

In operation, the CP fetches and decodes instructions, one at a time, from its mésagch
instruction is decoded, it broadcasts the operation to the PEs. Simultanesersiyenabled PE>&cutes
that operation on data in its local memory agisters. PEs which are disabled for a sequence of instruc-

tions remain idle (ignore the GPtommands), until tyeare enabled.

Because there is a single point of control for the entire system at the instruetiprsy@chroniza-

tion overhead is g@ry small; SIMD maanes can diciently use instruction-ieel (fine gain) parmallelism.



-113-

Communication between the local memories of PEs is usually either supported by connections to a
small number of PE neighbors or must be accomplished via thdf @ PEs are interconnected, then
motions of data according to the interconnection paths are reasorfatgneffor example, if PEis con-
nected to Pgﬂ) mod nfor alli t1,N], then a single instruction probably can cause all PEs to send an item
to their neighbor to the right. Using sfiefinverse-shufe connections, gnPE can communicate withyan
other in at most Lggcycles and, since the sliiefduplicates the data floof a reduction operation, parallel
reductions can befifiently performed. Using the path to the, @RPormation easily can be broadcast from

one PE to all others.

2.1. \ariations On SIMD Machines

Both Array and ¥ctor processors are SIMD-type machines in that the &ecute a single instruc-

tion on a set of data. The distinguishing features are:

2.1.1. Array Processor

This term has no one definitionytbhas been used to describe yndifferent architectures which
share the ability to perform operations on an array of data at a tima€itidnally, array processors are
machines which folle the aboe definition of SIMD ery closely More recentlythe term has been used
to describe deeply pipelined machines which place an entire array of data into the pipeline, perform a
sequence of operations within the pipeline, and output a stream of results. The second kind of array proces-
sor is best understood as ybhid between SIMD and pipelinececution. Examples of SIMD array pro-
cessors include the ILLIB IV [Kuc68] and the Connection Machine [Thi86]. Most of tkereples of the

pipelined type are attached processors stakby numerous companies including CSPI and FPS.

2.1.2. \éctor Processor

Vector processors typically tf from the abee SIMD model in that the PEs do notvhaocal
memories. Operations on an entiector are performed by loading the data from CP memory irtciéy
registers” (the rgisters of each PE), operating on it there, and finally storingebtback into the CP
memory This males rgister allocationdr more critical in achiéng good performance using aactor pro-
cessor than it is using SIMD-type machines in general. In addition, the cost of initiating paealieion
is higher (hence, slightly lger grain parallelism) due to the cost of loadingeater rgister from the CP

memory The best knen examples of this are theaxious Cray machines and the €enC1 [Con85a].



-114-

2.2. Optimization/Parallelization Concems

In terms of code optimization/parallelization, there are justkey points: layout of data in separate

memories and equalence of multiple instruction streams.

2.2.1. Data Layut

Since each PE has only a local mematyaring data acrossveeal PEs is difcult; therefore, the
compiler must attempt to minimize the need to communicate compaitees\between PEs.akous skw-

ing techniques hae been desloped tavard this goal [HaJ86].

Since \éctor machines do notVvma separate local memory for each PEwslg is less of a prob-
lem on \éctor machines than it is for SIMDs in general.weger, mary Vector machines require thatco#
tor registers be loaded from contiguous memory locations, which demands nearly the same coneern as ha

ing separate local memories.

2.2.2. Equialence Of Instruction Streams

All PEs can perform the same operation simultanephglgce optimization for a SIMD will hinge
upon the ability to usexactly the same sequence of instructions for up to N “processes” occurring in paral-
lel. While most earlier attempts to generate code for SIMD machines ttsik to mean that non-loop-

ing/non-\ector code cannot be parallelized, such a drastic measuredsassary
A conceptually simple (it difficult to implement) gample is that the tavassignments in:

A=B*C;
D=E*F;

can be recuted in parallel, pxaded the appropriate data, or pointers to them, can be loaded into places
addressed in the sameaywwithin two different PES local memories. df example, if the wlues of B, C,
and A are in rgisters 3, 4, and 5 of PE 2 and tledues of E, F, and D are in the correspondingsters of

PE 7, it is possible to compute both A and D in a singtetor” operation.

Any regions of a program which concurrgndetection finds to be parallelizable can beoated

with some parallelism on a SIMD prided that some portions of them can be coerced into identical form.

This also slightly re-arranges the preferredesrof application of optimizations within the compiler:

common subressions shouldhbe eliminated, etc. unless doing so wilv@ao ill efect on symmetry of



-115-

the prograns code. (Normallysuch optimizations are applieéry early — better SIMD code generally

results with late application of SISD-style optimizations.)

Consider:

FOR I:=1 TO N DO
IF A[l] > B[I] THEN
ClI] = (Alll * DII) + (A[I] * E[I])
ELSE
C[I1 = B[] * (DI1 + E[1]);

for which a typical ectorizing compiler wuld generate code approximating:

TEST[1:N] = (A[1:N] > B[1:N]);
WHERE TEST[*] DO

C[1:N] = (A[1:N] * D[1:N]) + (A[1:N] * E[1:N]);
WHERE NOT TEST[*] DO

C[1:N] = B[1:N] * (D[1:N] + E[1:N]);

This parallelizes waluation of the condition,ut takes about twice as long as necessary for the rest of the

code. Compare the ab®to:

TEST[1:N] = (A[1:N] > B[1:N]);
WHERE TEST[*] DO
TMP[1:N] = A[1:N];
WHERE NOT TEST[*] DO
TMP[1:N] = B[1:N];
C[1:N] = TMP[1:N] * (D[1:N] + E[1:N]);

In both cases, the ®WWHERE statements must keoaited in sequence on a SIMD. The fiestsion
will execute in the time it tas to sequentiallyxecute:

TEST = (A > B);
C=(A*D)+ (A*E)
C=B*(D+E)

whereas the secon@nsion merely requires the time to sequentiatigcate:



-116-

TEST = (A > B);
TMP = A;
TMP = B;

C=TMP * (D +E);

The better ®ctorization abee did not apply an previously unknavn transformations; it merely
applied the distrittive lav of multiplication aver additiof®. The transformation is unusual only in that the

compiler deliberately created symmetry in tiggans for both hales of the IF statement.

Although this is an oldously beneficial parallelization technique for SIMDs, weehaeen no com-

pilers emplging it, and we beliee this to be the first mention of it as a general principle.

3. MIMD

MIMD stands for Multiple Instruction stream, Multiple Data stream; a computer system which is

most like a huge collection of SISD machines. The generic diagram is:

PEl PE2 PE3 - PEN

Interconnection

Network

Mem1 Mem2 Mem3 - MemN

Figure 6:3: MIMD Ar chitecture

In operation, a MIMD closely resembles a collection of SISDs. Each PE fetches instructions and
executes themary much as it wuld if it were the CPU of a SISD. Here vaver, the diferent MIMD-

like architectures derge.

43. As noted in section 7:1.2.2, this rule is only approximately true for finite-precision arithmetic.
Here, we assume that thisfdilence is acceptably small.



-117-

3.1. Variations On MIMD Machines

Firstly, there are seral diferent oganizations of memory: local addressabijligjobal addressabil-
ity, and local/global addressabilityrhen there areariations on synchronization technique, ranging from
the fine-grained static synchronization of a VLIW [Fis84] to the coarse-grained dynamic parallelism of
machines lik CHoPP [SuB77], Utracomputer [Sch80] [GoG83] [Got86], and BBRP3 [PfB85] [Nor86].
The interconnection topology and technology alaoywvidely with very fast shared singledls systems,

low-bandwidth lypercubes, and “smart” medium-speed single or multistageorietw

Rather than defining all the possible combinations of these design features, the carkerd w
restricted to describing the most important aspects of the bashKee designs. These are Dynamically-

Scheduled Shared-Memory MIMD, Hypercube (Non-Shared-Memory MIMD), Viaid Dataflev.

3.1.1. Dynamically-Scheduled Shad-Memory MIMD

For most people, unless specified otherwise, this is the definition of a MIMD: a machine whgre man
PEs share access to a common memory address spae lotherwise completely independent. Each PE
operates asynchronously (at the instructimelleof the others — if synchronization is necessinyay be
obtained using agnof several diferent mechanisms. ypically, synchronization is prxaded by softvare or

hardware semaphores or by process scheduling.

In small machines, with between 2 and 16 PEs, the most commpnfweonnecting processors and
memory is to use a singleeny fast, sharedus. In order for performance to be reasonable, most memory
references must wer read the lus; this is typically accomplished by use of “snooping caches” — cache
memories associated with each PE which moniter &ctvity and update cache entries when needed so
that cache consisteynds maintained. Some commerciallyadlable &kamples are the Sequent Balance
8000 [Seq84], Areté Series 1000 [Are85], EIXSi System 6400 [EIX85], and the Alliant FX/8 [AbM86];
examples deeloped in academic settings include MIPS-X [HoC85] [Cho86], SPUR [HIE86], and Cedar

[GaL83] [KuD86]. (Some of these machines are also pipelined and/or incorpaete &ecution units.)

Larger machines, especially those designed to permit use of hundreds or thousands of PEs, cannot
tolerate the delays encountered in using a small number of shessskand auld require too manwires
to interconnect fully point-to-point. Most of theseger machines therefore are based on a, Dogtage
paclet-switched interconnection netvk which emplgs “smart” switching nodes. In the CHoPP [SuB77],

and in the single-stage neivk RFM-MIMD [PaK86], these nodes incorporate a special cache mechanism



-118-

which also manages pre-aal entries [Kla80] (thus impxing response when multiple PEs request a par

ticular memory location either simultaneoysly in sequence before that cache entry is flushed).

In the Ultracomputer [Sch80] [GoG83] [Got86], and RP3 [PfB85] ndte; the nodes instead ineor
porate fetch-and-add [Sto84]dcilities. Fetch-and-add permits concurrent additions to the same memory
cell (as used in counting semaphore operations) to be combined so that a single addition asegrépag
memory hence @aoiding contention for that cell [PfN85]. As such, it is particularly useful for paralleliza-
tions which require frequent Nay synchronization (SIMD-style parallelization). The more general form
of the concept, fetch-and-op, may be used witly associatie operation to implement parallelized asso-
ciative reduction operations (see section 7:1.2.2) throughout thenketvithout the need to dimensionally

promote \ariables.

Since the paakt-switched interconnection neatvks all hae traversal times of at least awePE
instruction gcles, if most paddts actually do trgerse the netark, each process wilkecute slaver by this
factor One vay in which this problem can be minimized is to carefully optimize oitwaching of each
datum** Another way is to incorporate local memory with each procestoiRP3 [PfB85], ELI [Fis84],
and [RaK86], local and global memory are one in the same — a reference is local if it happens to be in the
requesting PE'memory bank,lt memory is globally accessible via the netkv This places great impor
tance on the ability to distinguish local and global references and to perform ggmtetrallocation” of

the local memory

3.1.2. Hyperube (Non-Shaed-Memory MIMD)

Hypercube-interconnected non-shared-memory machines include the IPSC [Int85], N-Cube
[NCu85], and the Ametek [Ame86]. These machines place an asynchronously-operating module contain-
ing a PE and a local memory at eaéhts of a hypercube. Eachypercube machine also has a link to a

conventional machine which acts as its host.

A PE can communicate directly only with its neighbors on tyygetrcube, which is sfifient for
some problems. Heever, communication through nodes is ralaty expensve and this dct imposes
severe penalties for picking a suboptimal mapping of processes to PEs anaifles to local memories.

How a compiler can sob/the layout problem seems to be a research question for whicnésvers hae

44. We hae talen this approach in the single-stage machir&g8]. Each memory reference is
explicitly marked (by the compiler) with a field which determinesvhend where within the
network the item may be cached.



-119-

been proposed. Until this problem is answered, the primary concern in automatic parallelizatypefor h

cubes will be finding parallel processes whichieheery little need for communication.

Another non-shared memory machine ASRI [SiS81] [SiS86], which is interconnected using an
extra-stage indirect cube, and has the unusual ability to operatey amléaction of smaller SIMD and
MIMD computers. The difculties encountered in utilizinghSM are similar to those found for thgger
cube machines, @ver: (1) the interconnection netwk males all processors roughly equidistant for com-
munication, which simplifies the layout task, and (2) because both SIMD and MIMD modesitaele,

the control of hardare configuration at both compile- and run-time becomes a major concern.

The Fl/32 [Fle85] probably is also best described as a non-shared memory MIMD. Although this
machine supports both local and global memories, the global (shared) memory space is quite small, and it is
not practicable to ignore the local memories. Global memayldvmost lilely be used for synchroniza-

tion and communication only

3.1.3. VLIW

A VLIW, or \ery Long Instruction \rd, machine is a MIMD in which all processors share a single
program counterbut each instruction contains a separate field f@rye processdf. Hence, a VLIW
shares the SIMD property of nearly zero-cost synchronizatignpuhlike the SIMD, does not need to find
or create identical code sequences for all code to be run in parallel. In otldsr wVLIW is a statically-
scheduled MIMD — all run-time synchronization/communication is completely specified at compile time,

all timing relationships throughout the machine arenkmat compile time.

Programming of an entire VLIW machine is nearly the same problem as microcode programming for
corventional machines: mgrinterrelated gents may occur in parallel within one instructiont the syn-
chronization of “processes” oranous PEs is accomplished simply byvele compile-time packing of

instructions, not by run-time arbitration and scheduling mechanisms.

Although compile time will increase with the ig@arities of the VLIW the PEs of a VLIW will
often be of seeral diferent types and the interconnection scheme magy dlkost ap form. Some PEs
will generally be Floating-Point Units (FPUs), others will bewveottional intgeronly RISC machines.
Compilation is ery slaw, resulting programs areesy lage, and the total usable parallelism of a VLIW

machine is relately narrav, but the \ery fine granularity mads VLIWSs consistently able to use between 4

45. From a purely architectural point of wgit is actually a microcoded SISD with a writable
control store — bt that is also kind of MIMD from the compiler point of wie



-120-

and 20 parallelism width —evy few sequential HLL programsxRibit less than width 4 at this fine granu-

larity.

Good eamples are the ELI and Multiflocomputers [RuF83] [Fis84], f586], and [GUF86].

3.1.4. Dataflav

Dataflav machines xecute datafd graphs. Since dataflographs are easily parallelized, it has
been claimed that thieare naturally parallel and thewabus hardvare implementation of dataflois said to

be an &cellent parallel architecture [Mis75] [AgA82] [@&82] [lan82] [DeG84].

Although the diagram usually dva for a dataflev machine$ hardvare looks quite diérent from the
MIMD diagram because the MIMD nebrk is bi-directional whereas a dataflanachine is dnan with
two unidirectional netarks, thg are actually strikingly similar [KIL85]. The main &fence is that
whereas a classical MIMD priles rgisters and other mechanisms for takingasnd&ge of locality-of-ref-
erence, datafle generally does not. The result is that dataffoachines are usuallyexy fine grain and

very dynamic — there isevy little potential for static (compile-time) optimization.

Although the standard diagram of a dataflmachine is apparently f#fent from the MIMD in Fig-
ure 6:3, it is diferent only in that it is usually dnan with two unidirectional interconnection neatvks
rather than with one bidirectional neatik. In execution, each node in a dataflgraph is placed in the
matding stoe (memory modules). When alue is computed by srof the PEs, all dataflonodes wait-
ing that datum are “matched” with thatlue. Ary nodes which need no more data (all needed inputs ha

arrived, all graph predecessorvédired) are fied by selecting a PE and sending the computation to it.

Optimization for datafl hinges on depth minimization of the dataflgraph. This includes opera-
tions like constant folding, (usually) common skpeession elimination, and &ral kinds of code
motions. Reiews of dataflav optimizations appear in [DaK82] and [BrM]. Because there aregistees,

nor memorymost comentional optimizations do not apply

In some datafle models, hwever, large grain “chunks” of carentional control-flav computations

are used, in which case significant aghage can be made of locality properties [Bab84].

3.2. Optimization/Parallelization Concems

On dynamically-scheduled machines, although data sharing is not particpelysee, creation

and scheduling of lots of ynprocesses isery expensve. Too few processes leas PEs idle, too mgn



-121-

implies each process is too small and by the time it has been assigned to a PE wereau&tted it in
sequence. The optimum is therefore to constructgelaumber of parallel processes, each of which has at

least a certainpected gecution time.

Where the MIMD has a local memorgptimization will be highly dependent on making good
choices about what to Y& in local memory — which, for optimization purposes,asyumuch lile manag-
ing a huge set of PEgisters. In addition, there is the problem obaling “hot spots” in the layout of data

structures [LeK86].

4. Systolic Arrays And Pipelines

A Pipelined machine is a machine whereesal operations may be in progress simultaneobaly
only one operation may be initiated in eagfcle. A very deep pipelined machine, or one which is multidi-

mensional, is commonly kmo as a Systolic Arrdy. The generic diagram is:

|:>E1 PE2 — Ce — PE4

Figure 6:4: Pipeline/Systolic Achitecture

Since the 1968, most mainframe computersveaemplyed some pipelining of operations within

their CPUs: optimization for these is discussed in [CoS70].

Recently however, the concept of RISC (Reduced Instruction Set Computers) has yieldgd man
more, and deepepipelines. Br example, RISC-I, RISC-Il, SPUR, MIPS, and MIPS-X all rely on com-
piler techniques to fill pipelines of one oradwnstructions depth [Gro83]. In GaAs implementations, RISC

processor pipelines are often six instructions deep [MiF85].

Systolic Array computers with pipeline depths of ten or moke ladso been proposed, particularly
for specialized applications. akp [AnA86] is the primexample of a sonwehat general-purpose systolic
array In [GrL86], techniques for carerting programs written in a special HLL into code foary/are

given, hut no discussion of techniques for using systolic arrays aget t@fr automatic parallelization has

46. Strictly speaking, some systolic arrays may also function as SIMD compuiethehissues
for SIMD computation are discussed in section 6:2. The Connection Machine [Thi86] may be
viewed as a systolic array using the SIMD, rather than pipeline, model.



-122-

yet appeared in the literature.

In either the pipelined or systolic models, the primary concern is simply finding enough instructions
to keep the pipeline full. Pwous work has &iled to leep @en four instruction deep pipelines filled
[Gro83], yet, as mentioned al® pipelines are often six or more instructions deep. There aratevest-
ing possible solutions:

(1) Perform relatrely lamge grain concurrerycdetection on each program, then fill the pipeline by 4inter
leaving instructions from the “potentially concurrentgiens.

(2) Use the code motions of trace scheduling [Fis84] to fill the pipeline. This hasgdteamefect of
filling the pipeline with some instructions whictould not hae been xecuted in the sequentiagéw
sion of the program — instructions which were hoisted from a conditionediguéed basic block
which, upon galuating the condition, auld not hae to be gecuted.

either or both should be applied. Currentgmpilers attempt to fill pipeline delay slots only with instruc-

tions which are from the same conceptual process and which are certaixecutedt



-123-

This page is intentionally blank.



-124-

Loop Parallelization

In the search for parallelism within a sequential program, the most common sources of operations for
large-width parallel gecution are looping constructs. Most code has agulae structure with relately
small-width (often fine-grain) potential parallelism; most itewatr recursie code has the potential for
parallelism-width proportional to the gislem size. In addition, the code resulting from parallelization of a
loop’s contents, or of recuva calls, usually has agelar structure which mais it possible to:

. Reoganize or repackage the parallelism without actually analyzing eactdinali potentially-paral-

lel chunk of code — only a single representatihunk need be analyzed.

. Share a single, parameterized, chunk of code for all processes created (this, of courswkerityr w
certain machines, particularly shared-memory dynamically-scheduled MIMDSs).

In most languages, loops may be constructed using WHILE, REPEAT, FOR (or DO), or G@®TO — b
as indicated in section 3:3.1, theylwords used need notVeary effect on the compiles’ perception of

the algorithmic structure.

In this chapterguidelines for loop parallelization, based omvflanalysis of algorithmic structure, are
presentetf. Most of these rules va been published by other authorst there are seral refinements
which we belige to be stated here for the first time. Our primary goal is simply to state the rulesyn a w

that is consistent with the refined-language approach as it is presented in this document.

1. Types Of Loops
There are mandifferent kinds of loops. All loops, ever, hare control and a bodwf a loop:

(1) has a body which contains no definition points which may be used by the lbmaly in a later itera-
tion (no D-U chains linking iterations),

(2) has a body which contains no definition points, or uses of other definitions, which may be killed by
the loops body in a later iteration (no D-U chain in one iteration that uses the same storage cell as a
D-U chain in another iteration), and

47. This chapter will not discuss loop unwinding/ureting, since such techniques reduce loops
to structures which are best parallelized by the techniquea @i Chapter 8. Hwever, such
transformations are important, especially for machines\ikiWs [Fis84].



-126-

(3) has loop control which either enumerates the set of iterations\od@saa simple loop irariant for
mula to correctly determine whether th® Neration of the loop will occur and what its parameters
will be (note that N may be Iger than the number of iterations the loop will actually é)ak

then the loop is completely parallelizable. All “iterations” of the body couldxbeuted in parallel, or in

ary sequential/parallel ganization.

For example:

DO 10 1=1,J
A(l) = A1) * B(1)
10 CONTINUE

If it is known that A and B are independent (naredapping) arrays, this loop can be completely paral-
lelized: A(1) = A(1) * B(1) may be e xecuted before, afteor in parallel with A(2) = A(2) *

B(2), A(3) = A(3) * B(3), and so forth. Since | can ne ver equal | + (N * 1) the first two rules
appear to be satisfiédlt can be determined whether th& Nteration will or will not occur by simply test-
ing if N < J, and the only parameter to thé mxecution of the body is N. Therefore, this loop is paralleliz-

able.

1.1. D-U Coupling Of Iterations

Suppose that a loop fulfills the second and third conditions statee, &b violates the first: the
body contains a definition point which is used in a later iteration. A gaode is:
DO 101=2,J

A(l) = A(I-1) * B(l)
10 CONTINUE

Where the N iteration uses a definition point occurring in a yaois iteration, in this case, the 51

A(N-1) uses the preious iterations definition of A(N).

While it is not generally possible to completely parallelize such a loop, it may be “pipelined” to some
extent. The walue of B(N) is available before the N iteration’s execution has completed, hence, B(N)

may be fetched by the'Nterations code in parallel with the NMiteration's execution.

48. The formula | + (N * 1) represents thalue of | after N iterations of a loop with increment 1.
The only vay | could equal | + (N * 1) is if N is zero, in which case it is the same iteration.

49. Provision must be made for fimg multiple simultaneousalues associated with the name |,
since the D-U chains for | violate the second rule. This is discussed in the section 7:1.2.2.



-127-

The maximum speedup which can be obtained in thisisedetermined by:
. The amount of code within the loop body which can xeceted before the first use of a\pozis
iteration’s definition. (As is the case in theaenple.)

. The number of iterations between definition and use;¥amele, if each iteration used a definition
from ten iterations prgous, then each set of ten iterations canXeeeted in parallel.

1.2. Killed Definitions

If only the second condition stated earlier is violated, the loop can be directly “pipelined” in much
the same way discussed in section 7:1.1. wkwer, such a loop can be completely parallelized by introduc-
ing a nev “variable” in the code. This occurs in threefdient ways: re-binding of a programmgiven

name, dimensional promotion of a name, and asseeigduction of a name.

1.2.1. Re-Binding Names

Consider:

DO 10 I=1,J
A(l) = A(I+1) * B(l)
10 CONTINUE

At first glance, this seems to be the same asxamgle where the first ruleas violated, bt it differs in
that the N+1" iteration re-defines an element whose definition prior to entering the loop is used in-an ear

lier iteration: in this case, the™Nteration.

A definition is killed by hging its \ariables value re-defined: to eliminate the conflict, all that need
be done is that tavseparateariables must be bound to thefeient definitions. Reriting the code in this
way eliminates the conflict:

DO 101=1,J

NEWA() = A(I+1) * B(l)
10 CONTINUE

Leaving the array NEWA as thariable to be used in later definitions which refer to the progrargiven
name A.

If there is a flav path (sequence of D-U chains) by which a definition of A bound to the array A and a

definition of A bound to the array NEWA bathd the same point, then a opjis inserted to place the



-128-

result back in A, ging:

DO 10 I=1,
NEWA(I) = A(I+1) * B(l)
10 CONTINUE
DO 20 I=1,J
A(l) = NEWA(l)
20 CONTINUE

which constitutes tov completely parallelizable loops. Theawdifferent bindings may reach the same
point either by:
. Defining only a portion of the data structure within the loop, in which casdamninating [AhU77]
[AhS86] definition of the data structusedther members is still infett, or
. Arriving at a point of coremence of flow where dérent bindings were applied to the same name on
the diferent conerging paths.
Notice that the coploop can be hidden if another loop which defines the samable, @er the same
range of inde values as in the original loop, folls (before the carergence of flay, if that is the cause for
the coly operation). One wuld simply define A from computations on NEWAr écample, if gven the
code:
DO 10 1=1,J
A(l) = A(I+1) * B(I)
10 CONTINUE
DO 20 1=1,J
A(l) = A(l) + C(I)
20 CONTINUE
D = A(K)

Parallelization can proceed as though the feilg code were input:



-129-

Here, a programmed reference
to A is bound to the array A

O o000

DO 10 I=1,
NEWA(I) = A(1+1) * B(l)
10 CONTINUE

Here, a programmed reference
to A is bound to the array NEWA

O o000

DO 20 I=1,J
A(l) = NEWA(l) + C(l)
20 CONTINUE

Here, a programmed reference
to A is bound to the array A

O o000

D = A(K)

A similar transformation can be appliedverd elimination of some cgpoperations induced by functional-
language notation [Den86]. The problem in that case iswbhatecompounded, n@ver, by the weak typ-

ing and inconsistent use of array constructors commonly found in such languages.

1.2.2. Dimensional Pomotion

In the xample abwe, the definition being killed & one whichasted prior to entering the loop.

Instead, the definition being killed could be created and used within each iteration of the body of the loop.

For each of the>amples gien abwoe, the wariable | is defined and used in thisay. In order to
completely parallelize thexecution of one of these loops, it is implicit that thepauld be a ector of bind-
ings for the programmaegiven name I: one for each concurrentlyigting definition. Going back to the
original example:

DO 10 1=1,J

A(l) = AQl) * B(l)
10 CONTINUE



-130-

Becomes the parallelizeaecution of up to 3° assignments:

Al )=A0l )*B(I )
Al ) =Al )*B( o)
Al )=A(0 ) *BI  5)
Al )=A0 ;)*B( )

Plus one final assignment, if the laatue of | defined in the sequential prograaswsed outside the loop:

In general, if a ariable is used within a loop such that it is defined and used separately for each itera-
tion, to obtain complete parallelization, the data structure bound toahable must be promoted to hold
one more dimensiog’worth of data. A scalar becomes an array; a D-dimensional array becomes a

D+1-dimensional array

1.2.3. Associatie Reduction

Another kind of loop, which violates the second rule in nearly the saayeisvthe kind which
appears to be performing a completely sequential operatmmex&mple, the folling code computes the
sum of the points in a 4-poitvector:

SUM=0
DO 101=1,4

SUM = SUM + A(l)
10  CONTINUE

In fact, this code is “inherently sequentiand cannot be parallelized (other than by “pipelintrag dis-

cussed earlier) without undging an algorithm change (lvever minor).

The specified order of the operations directiyolaing sum is:

50. It is necessary only to makhe array laye enough to hold as many data as the mra& can
operate on in paallel — the variable | didnt necessarily hae to become aector of length J.
This problem is discussed further in section 7:2.

51. There is no special significance to the number 4 appearing here; neitherasttiieat it is a
constant particularly important. Itas chosen merely because it simplifies tk@amation of
the code transformation.



-131-

SUM =0
SUM = SUM + A(1)
SUM = SUM + A(2)
SUM = SUM + A(3)
SUM = SUM + A(4)

The algorithm change is simply to perform the additions as a tree-structured reduction operation — the
usual “dvide and conquer” approach. Using theidit and conquer approach, the ordering of necessary
operations is:

PARALLEL{{TEMP ; = A(1) + AQ)}, {TEMP , = A@3) + A(4)} }

SUM = TEMPl + TEMI:’2

This different algorithm is well-suited to maiparallel machines since it minimizes the sequential depth of
the task, havever, the original ersion is typically superior for a strictly sequentiabjetrmachine because it

minimizes the number of intermediatelwves which musbést simultaneously

The problem with the me algorithm is that, unli& ordinary arithmetic addition, finite-precision
floating-point (or intger) arithmetic addition is not an assosi@tbperation. Changing the order of the
additions can change thalue computed: by roundfdf the case of floating-point and byesflov/under
flow conditions for both inger and floating-point. The algorithm change, which assumes that the com-
puters addition operation is associetj does not insure egalence of the program before and after the

change. Strictly speaking, correctness is not preserv

Usually this problem is not adg concern, sinceverflonv/underflav situations are rare and thefdif
ence in round-dferror is usually small enough to ignoreorFsome computer operations, assodiyti
holds, hence correctnes®wd be preseed. The follaving table outlines the safety of performing asso-
ciative algorithm changes such aswenting the sequential summation into itsvide and conquer” equi

alent.



-132-

Safety Of Associatve Transformation

Operation Integer Floating-Point
Or Safe Not Defined
And Safe Not Defined
Exclusve Or Safe Not Defined
Addition Unsafe: @v/Under | Unsafe: @v/Under Rounding

Multiplication | Unsafe: Osr/Under | Unsafe: @v/Under Rounding

Minimum Safe Safe

Maximum Safe Safe

Many optimizing compilers all the user to select, at compile time, whether the compiler should perform
transformations which could change the results computed.

More comple algorithm changes could also be incorporated ,glach special case applies toeayv
small fraction of loops. & example, it is possible to perform assosiatieduction of xponentiation oper

ations, It the opportunity to apply such a transformation rarely occurs.

1.3. Loop Control Dependency

Given that the first tev rules’ conditions are met, in order for completely paraiekation, it must
be possible for a compiler to determine whether tHetétation of the loop will occur and what its parame-
ters will be.

In all the kample loops gien abee, the loop conditions were able to be parallelized because of the

definition of a DO loop; gén:
DO label variable=fst,last,inc
FORTRAN permits the compiler to determine whether th® Neration will occur by a loop imariant test

formula (which we call the iteration decider) and also pites a loop imariant formula for the loop-

body’s parametéf:

52. Here, we mak the simplifying assumption that inc is positi This need not be the case in
ANSI FORTRAN '77.



-133-

IF (N*inc+fir st .LE. last) DO_BODY/(N*inc+fir st)

where DO_BODY/() recutes the loop body for the iteration where the iteration cordar@hle had
the value gien as the gument. If no such formulas can be found by the compdety “pipelining; not
completely parallelxecution, is possible. This flifrence can be fefcted by a surprisingly small change in

the source code. oF example, consider:
for(i=0; il=j; ++i) a[i] *= b[i];

Which is a C ersion of the ample at the start of section 7:1 —wwever, there is a problem in this coding.

The olvious transformation of the loop test condition results in an iteration decider whidd wmis-
takenly predict that iteration j + K, where K is grcounting numbeiis also part of the loop — to obtain
correct results, the loop test in the for must be eented from i != jtoi < j. This particular con-
version can be performed by a compilend embodies the kwtedge that repetition of ++i results in a

sequence of monotonically increasiragjues for i.

Not only must the iteration decider be loopdnant, lut it must gve the proper response for input
values of N which are lyend the loop bounds. When code is parallelized toxezated as P processes, it
is possible that an iteration number agdaas the upper loop bound plus P-1 will be tested to see if the
loop body would actually beeecuted for that iteration. Consider the C codevaldmeing gecuted on a

four-processor MIMD where thealue of j happens to be 5:

processor0 jcessorl  jmcessor2  pocessor 3

iteration O iteration 1 iteration P iteration 3
iis0 iis1 iis2 iis3

i'=j true i'=j true i'=j true i'=j true

iteration 4 iteration 5 iteration 6 iteration 7
iis4 iis5 iis 6 iis7

i'=j true I=j f alse | il=jtrue |il=jtrue

Figure 7:1: An Incorrect Iteration Decider



-134-

here we see that the loop bodguwid incorrectly be xecuted for alues of | equal to 6 and 7. In this case,

the problem can be corrected simply byvasting != into <.

The folloving C code demonstrates a more general kind of violation of the third loop parallelization
rule — a loop whose control testggession is not properly defined for potential iterationsbé the end

of the loop:

for (i=0; afi]l=j; ++i) ++b[i];

There are tw approaches to parallelizing this loop. One is pipelining (much as before), the other is what

we call contiol precomputation.

1.3.1. Pipelining

The “pipelining” which results wuld permit concurrentvaluation of afi] != j and addition of
one to the &lue of b[i], b ut the result cannot be stored into b[i] until it has been confirmed that a[K]
does not equal j for all K suchthat 0 < K < i. If a[K] does equal j for some K < i, the addition of
one to b[i] w ould be vasted dbrt. This kind of “Pipelining” simply permits operationseept stores, to

be xecuted with some parallelism.

1.3.2. Contol Precomputation

Control precomputation is a ne°3 kind of loop transformation which attempts to parallelize apor
tion of a loop body by selewgtly, deliberately serializing some operations within the loop. In partigular
operations which arewolved in computing thexpressions which determine when the loopxitee are
placed in a separate loop called thelpop. The other operations are placed in a parallelizable loop called

the postloop, and the preloop folled by the postloop are both placed inside the ciotaop.

The overall efect is to eliminate synchronizatiorverhead by placing the synchronization entirely

within a single process — the one whicteeutes the preloop.

For example, the C code:

53. In discussing this with other researchers, weehzeard that similar ideas had been proposed
before, it we hae been unable to locate priookk on the topic. A detailed discussion of
control precomputation, and related loop transformations, will appear in [Die87].



-135-

for (i=0; a[i]!=j; ++i) {
b[i] = f(i);

Listing 7:1: C Loop With Contr ol Dependence

where f(i) performs a relati vely expensve computation with no significant siddesits, becomes some-

thing like:



-136-
int exit, iter, itemp[MAXWIDTH], piter;

i=0;

/* Closure loop */
exit = FALSE;
do {

/* Preloop */
iter = 0;
do {
if ((afil'=))) {
exit = TRUE;
break;
}
itempliter] = i;
++i;
} while (++iter < MAXWIDTH);

/* Postloop */
for (piter=0; piter<iter; ++piter) {
b[ itemp[piter] ] = f( itemp[piter] );

} while (lexit);

Listing 7:2: Listing 7:1 Using Control Precomputation

which, although the preloop is still sequentially constrained, permits the postloopxiechted completely
in parallel. Although the complete transformation is quite coxnal®l incorporates corrections for multi-
ple-entry multiple-git loops and conditionals within the loop bodlye underlying principles are simple:
(1) LetP be the set of all uses which are in thét €ondition expression of the loop. df each operation

o within the loop, if there xsts a use u [P such that o CU*(uf? then o is placed in the preloop;
otherwise, o is placed in the postloop.

54. The use closure of use u. See section 5:1.3.



-137-

(2) For each deb [preloop, if D*( ) is not a subset of the preloop (i.e., a def in the preloop is used in
the postloop), allocate aewtor of temporary storage taffer the alue of this def between the
preloop and the postloop. Adjust the references accordingly in the preloop and postloop. In Listing
7:2, itemp is created because i must be defined in the preloopt s \alue is used in the postloop
as well.

(3) Construct the final control structure. The closure loop simply permitsrbectors to be of finite
size, in the abee example, of size MAXWIDTHyjpically, this size wuld be related to the parallel-
ism width of the hardare.

The main reason that thiswmeransformation is mentioned here is that in analysis ofertional C code,

we hae found that a ery lage fraction of all loops in the code are of the types which most other

researchers typically classify as “inherently sequential” — unable to be parallelizegt byeans — yet

mary of them can be #dctively parallelized using the control precomputation transformation (or other
related transformations). The faNing kinds of loops areary common in C code and can all be paral-
lelized in this vay:

. a loop which reads and processes input from a single stream (file) until some condition occurs in the
stream,

. a loop which treerses a linkd list operating on nodes as\ttege &amined, and

. a loop which is essentially a FORAN DO loop with an alternat premature»at condition.

For example, the loop:

while ((c = getchar()) != EOF) {
checksum += f(c);

Listing 7:3: An “Inher ently Sequential” C Loop

where f(c) performs a relatively expensve computation with no significant sidefesfts, becomes some-

thing like:



-138-

int exit, iter, ctemp[MAXWIDTH], piter;

/* Closure loop */
exit = FALSE;
do {

/* Preloop */
iter = 0;
do {
if (I((c = getchar()) '= EOF)) {
exit = TRUE;
break;

}
ctempliter] = c;
} while (++iter < MAXWIDTH);

/* Postloop */
for (piter=0; piter<iter; ++piter) {
checksum += f( ctemp|piter] );

} while (lexit);

Listing 7:4: Listing 7:3 Using Control Precomputation

which is fr better than pipelining itxecution, because this reduces the amount of synchronization needed
for execution on most machines byacfor of MAXWIDTH. It has thideaft because it places the synchro-
nization-intensie portion of the loop in a single process/processmmaddition, it is unclear whether it is
physically possible for reads from a single file to be spread across multiple processors as pipelitdng w

generally imply

Notice, havever, that parallelization of the abe postloop also requires that the postloop be pro-

cessed as an assoaciatreduction.



-139-

1.4. Hybrid/Nested Loops

If a loop contains other loops, these loops may be interchangal@g\so as to maximize useful
parallelism. Nesting of loops may be changed only if no dependencigsrréhe interchange 78]

[PaK80] [Li85] [MiP86] [PoK86] [AIBSE].

If a loop contains code whiclvidences diferent kinds of parallelism constraints, thefeliént por
tions of the loop body can be separated-out into multiple loops with the same bounds. Thisvierske in
transformation of the caentional optimization technique called loop jamming or loop g1y [AhU77]

[AhS86].

2. Packaging Techniques

After discussing the diérent types of looping structures, and the parallelism opportunitiggptbe
vide, it becomes necessary to consider the “dirty” details fidiesft process packaging for specific
machines. There are mamays to present the concerns of machine-specific coding; in the cuoeqgt w
the presentation centers on the fundamental guidelines der déasses of tget computerrather than for a

handful of actual machines.

It is useful to create simplexamples whichgose the problems. A good firstaenple is:

DO 10 1=1, N
A(l) = B(I) * C())
10 CONTINUE

This loop can be transformed into thector operation:

A(L:N) = B(L:N) * C(1:N)

The first obseration about this ector encoding is that, since A(l) appears in the original program
in a scope where | can be gvalue from 1 to N, the array A mustveaat least N elements; this isvhave
know that A(1:N) is a v alid description of aector The same principle can be applied towstbat B and
C are also referenced in alid way. The only way in which this parallelization could produce incorrect
results is if the original DO loop produced incorrect results for gdaevof N as well (i.e. if N were greater

than an arrag upper bound).

The second insight wolves the realization that thestor form written abee is only viable as the



-140-

parallel ececution structure if the tget machine is able to support at least N “proc&ss&sippose the tar
get machine is of parallelism-width.WFf N is greater than Wonly W operations can be performed in-par
allel; the other N - W will hee to be gecuted either before or after the first W — to sonterg, thg must

be executed in sequence.

In the follawving sections, these twobserations are xpanded into the basic strgtefor packaging

loop parallelism.

2.1. Maximum Loop Parallelism-Width

In the &kample abwe, the transformation into parallel codasaquite direct: the loop rangesvsim-
ply pulled inside the array references. No additional modifications had to be made to either control or data
structures. Suppose instead that the foiiy code is to be parallelized:
SUM =0
DO 101=1,N

SUM = SUM + F(I)
10  CONTINUE

Even assuming that data-access information about F(vailable, the parallelization transformation will

be considerably more comple

It is complicated in part because this loop is able to be parallelized only by applying an associati
reduction which, for most parallel computers, is commonly accepted to require O(Log N) time and a tree-
like control structure. It is also complicatedweeer, by the &ct that SUM is only a single cell, hence it can
only hold a single alue at a time. The usual solution, discussed in section 7:1.2.3 is to promote SUM from
a scalar into aector thereby allwing SUMS elements to be operated-on in parafi¢low big should this

vector be?

At first glance, the answer appears to be that SUM shoulddmtoa of length N —dit N could be

arbitrarily lage.

It is possible that reasonable bounds hdsn be dexied at compile time byxamining N& other

55. Pipelined taget machines do not violate this claim. The parallelism-width of a pipelined
machine is its depth; if the depth of the pipeline is less than N, the pipeline serializes the oper
ations.

56. Machines supporting féteand-op, in this case fét@nd-add, appear to perform this operation
in time proportional to N/W and do not require SUM to be dimensionally promoted (an equi
alent pansion occurs within the interconnection natds nodes).

57. Here, we assume that N is an INTEGER; similar rules apply if N is a CHAARR, REAL,



-141-

appearances throughout the program.

In the following rules for determining these constraints, we will refer to the current use of N as N
and to the range (set) of possiblues for an item X as Range(X). The intersection (n) of the ranges by

the following constraints constitutes the best estimate of the Rgpge(N

2.1.1. Data Type Constraints

The range of alues permitted for aaviable of NS declared type form absolute bounds on tilaes
of N, If N'is an INTEGER and INTEGERs are permitted to haities in the range -32768 through
32767, then it is impossible thaf 'l \alue is less than -32768 or that Xceeds 32767. In otheronds,
Range(ly) ({-32768..32767}.

This is a useful constraint mainly in languages which permit definition of enumerated tgpesl,(P

ANSI C, etc.).

2.1.2. D-U Range Popagation

Range(ly) cannot be greater than the union of the rangeslaes for each definition of N which is

in the U-D chain of | For example, code such as:

N=A
IF(C)N=B
D=N

Would yield the constraint that RanggIN{Range(A) [Range(B)).

2.1.3. Array Index Constraint

If there is another use of N which isvays eecuted when Nis executed, and that use appears as a
index to an arraythen the range ofalues for Iy cannot be greater than the range afues alloved for that

index of the array?.

Of course, this assumes that the program does nat mekked references which are out of array

bounds. (Unfortunatelyexceeding the array bounds is a common programming, earat this rule is

etc.

58. The reverse application of this rule has been used to estimate the bounds on arrays from the
expressions used to ind¢hem [Kle83].



-142-

therefore somehat unreliable.)

An example of this constraint is:

int a[100], e[5];

if (c) {

e[N]=f;
}else {

b=N

a[N] = d;
}

which specifies that RanggN{0..99}, since the declaration of a permits indevalues in {0..99}.

Notice that, although Range(N) for the N which appears in the “then” clause is similarly constrained
to be a alue in {0..4}, one cannot infer that this range applies fpr Alcondition which does not directly

involve N could still represent a constraint ors Milue.

2.1.4. Conditional Control Constraint

If there is a use of N which dominategawd is part of a conditional test which requires Range(N) to
be [la certain range in order for Nto be eecuted, then Rangg(Nlof the tested range. This rule is

briefly discussed in [Fis84].

For example:

if (N <601) {
a=N

w

checks that Range(N) is in {—..600} and onlyeeutes I if this is true. Hence, Range(N[l
{—..600}.

2.1.5. Arithmetic Range Popagation

If N's value vas originally computed by arithmetic operations on a seawébles and/or constants,
range arithmetic may be used to compute Range(dim the ranges of thealues used in the arithmetic

expression.



-143-

For example, suppose Range(i) = {5..20} and Range(j) = {1..2}. Then Range(i — (j * 2)) =
{1..18}.

Even using the ahe (relatvely expensve) analysis to determine Rangg(fom the program, this

range may be too Ige.

For example, N in the sample loop at the fmning of section 7:2 may be constrained only by the
fact that it is a 32-bit ingeer If one alvays allocates the maximum size, thisuld lead to allocation of
space for an array with subscripts ranging from 1 to 2147483647 — itigsildlifo imagine that it is wrth-

while promoting SUM into an array witkiey two billion elements!

2.2. ldeal Rarallelism-Width

As discussed at the start of section 7:2,WHich is related to the machine width, forms the true
upper bound on the size of a promoted dimension. If N the$h SUM wuld be promoted to aeector of

length W

Let the \ariable P be the number of parallel processes to be created by the generated code. As a first

approximation, P is set as:

If MAX(N) <W
P = MAX(N). If the loop cannobéhibit as much parallelism as the machine, it is conceptually unnec-
essary to create \N useless processes (the number requirec#p lall processorauby). In archi-
tectures which require a highgtee of lav-level symmetrysuch as SIMDs, one might be required to
create these W “null” processes — the dérence is minor and mostly semantic.

If MIN(N) >W
P =W. If the loop will always ehibit more parallelism than the machine can use, we need only gen-

erate as much as the machine can use.

If MIN(N) < W AND MAX(N) > W
P = W. In this case it is impossible to decide which is greafeor W Because the relationship of N
and W is not knain, it is probably best to minimize theovgt case — the @rst case occurs when the
greatest xecution delay could be encountered, which is generally when N > W — hence, we pretend
that N > W This is the only of these three cases in which it is possible that unnecessary code will be
generated andxecuted.

In fact, while these assignments for P will result in the minimum completion time for the completely-
parallelizable portion of a loop, thelo not necessarily insure that the minimum number of processes (or

resources in general) are used to aehtbat minimum time. It has been suggested that the optiralira v



-144-

for B in ary of the abge cases where Powld have been set to WWs more precisely:

P=MN/N/WID

The reason for this is that N / WCs the minimum number ofcles” in which a machine of width W can
complete the computations, and the complete formula therefees tie smallest inger number of pro-
cesses for which the same numberafles will be needed. This formula, as writtenayds somehat
awkward to compute, i it can be computed using ordinary gee arithmetic (assuming N and W are inte-
gers) by:

D=(N+(W-1)/W
P=(N+(D-1)/D

where D is the Depth of the parallelization, ytles. In this form, the formula will typically require inte-
ger operations for one decrementptadditions, one shift-right, and oneidie. This is cheap enough to be

computed at run-time, if other machine characteristiceemaik-time process structuring desirable.

A good demonstration of the potentialvisays through use of this formula can be constructed by
assuming &lues for N and WSuppose N=301 and W=100. Thigesi:
D =(301 + (100 - 1)) / 100

D =400/100
D=4

P=(301+(4-1)/4
P=304/4
P=76

which states that thea$test a 100-processor machine coulecate this code auld be 4 gcles, lut that

only 76 processors are needed in order to insure that no more thelpsiare tadn.

Not all machines wuld be able to takadwantage of thedkct that 24 (or 100 - 76) more processors
would be aailable to do useful ark during eecution of this code. Multiprogrammed MIMDs are a good
example of a class of machines which can benefit greatly in this MLIW and SIMD architectures could
benefit from this only by finding another loop(s) which could begewmwith current loop — an unbky

situation.



-145-

Ironically, even if the machine cannot malother use of the processors made idle by the adjustment

of B, it may still be desirable to use the adjustelli® of P:

If an associatie reduction (such as the summation in tRangple) will occuy this pravides the
opportunity to perform the reduction in O(Log P) time rather than O(Log W).

There may be lwer communications cost, sincemMer processors need to communicate with each
other

Machines which require run-time operations to create/terminate processes can benefit by performing
W - P faver such operations.

The reasons not to use the formula are:

The memory reference pattern may contaimefeconflicts when P = WCoincidentally this also
leaves open the possibility of minimizing the conflicts by chosing a width between P and W which is
relatively-prime to W (A hardware \ersion of this idea is presented in [LuB80].)

All the abore calculations assume that the loop body has the same cosy ftaration. If this is not
true, or if dynamic scheduling imbalances the load, dynamic width adjustment, as described in Chap-
ter 8, might be preferable.

Further it is not alvays possible to ko at compile time precisely what W of thegat machine will

be. Although run-time computation of$?alue is possible, there is a reasonable approach to guessing W

at compile time. A guess is &k based on the probable runtimgimment.

For example, if a program is being compiled to bea@utable on anof a group of machines which

are identical xcept in that each hasymhere from 1 to 32 processors, onewd probably compile based

on the assumption that W = 32.

If most of the machines had 5 processors, one might instead compile with W = Sfettlisedf

optimizes &ecution on the 5-processor machinas, would male 6 to 32 processor machineeeute the

program nodster than a 5-processor machine.

3. A Complete Example

Consider:



-146-

inti, n;
double x, sum, h;

scanf("%d", &n);

h = 1.0/ ((double) n);

sum = 0;

for (i=1; i<=n; ++i) {
X = (((double) i) - 0.5) * h;
sum +=4.0/ (1.0 + X * x);

Listing 7:5: Looping Example Code

This is a fragment of a program which uses the “rectangle method” to approximasduefsz It is

derived from a program distnitbed as a quick test of automatic parallelizers.

3.1. Corventional Optimization

When performing automatic parallelization, it is easy tgdbthat much can be done to speedup pro-
grams without using hardwe parallelism. The first step is to perform thisvemtional optimization. (It

may be useful to applyavious comentional optimizations as part ofexy step in program transformation.)

The for loop is easily restructured using caentional (sequential) compiler code impements. i
is an induction variable, hence i is eliminated and the lo@riable becomes x. This ceerts the for
loop into:

for (x=(1.0-0.5)*h; x<=(((double)n)-0.5)*h; x+=h) {
sum +=4.0/ (1.0 + X * X);

The epression for the loop limit is loopvariant, hence it can be med out of the loop to a point immedi-

ately preceding the loop entrifhe final sequential program fragment is:



-147-

int n;
double x, sum, h;

scanf("%d", &n);

h = 1.0/ ((double) n);

sum = 0;

t1 = (((double) n) - 0.5) * h;

for (x=(0.5 * h); x<=t1; x+=h) {
sum +=4.0/ (1.0 + X * x);

Listing 7:6: Optimized Looping Example Code

The transformed loop has only about 4/6 the operations that were originally contained within the
block inside the inner loop. Presumaldysimilar decrease irxecution time wuld ensue (for most et

machines, either sequential or parallel).

3.2. PRarallelization

Since we hee not specified the precisedat machine, it is impossible to directly specify the best
code to be generated. Instead, this section will present the fundamental parallel structure only leosely tar
geted to a particular machine; this structure must be encoded in the most appr@yitteesch particu-
lar taget machine, and we will not concern oursslwith determination or production of that encoded
form. Abstracting to this parallel structure does not imply that this parallelization is near optimal for all
machines, bt simply that dexiing a neatoptimum form for most particular machines is easyegithis

starting point.
Basically there are tw steps:

(1) Analyze the loop; this includes both concurredetection analysis by the rulesen in this chapter
and determination of bounds on iteration. The result is that both parallelization viability and maxi-
mum parallelism width are degd.

(2) Construct parallel code for that form.

In step (1), it becomes apparent that the for loop can be parallelized using an assocetuction

of additions to sum and dimensional promotion of tlagiable x. It also becomes clear that the constraints



-148-

on the alue of t1 are rather wide, and the number of iterations the for loop may redk essentially the
largest number an int can represent — for a 32-bit int, this is 2147483647. Since the number of times the
loop will execute could beair lager than the number of processors in the machine, it is probably best to

select the parallelism width to be the width of the machine.

In step (2), let us assume that they¢drmachine is a partitionable SIMD, such &SM [SiS81]

[SiS86]. The follaving support functions andaviables will be used:

pe_avail()
A function which returns the maximum number of PEs (SIMD processing elements) whichadre a
able to the program at run-time. So that the user program may determinedrg of those it
wants, this call locks-out all other programs from allocating these PEs until a pe_alloc(N) iee
cuted by this program.

pe_alloc(N)
A function which allocates up to N PEs and returns the number actually allocated. If thisasall w
preceded by a call to pe_avail(), and if N is less than the walue returned by pe_avail(),
pe_alloc(N) is guaranteed to allocate N PEs. For FASM, this is slightly complicated by thedt
that SIMD PE groups must contain a multiple of 4 PEs, hence a request of N PEs will actually return
((N+3) & (73)) PEs.

pe_number
A read-only pe wariable which gies the logical number of the pe in which it ¥@euting (a number
between 0 and pe_count - 1, inclusie).

treesum(pe_v, min, max)
A function which performs a tree summation across PEs logically numbered min to max afubs v
of the PE wariable pe_v, and returns thalwe of this sum. This tak O(log (1 + max - min)) time.
The parallelization proceeds as follm First, ag variables which must be dimensionally promoted

must be declared:

/* Variables from original code */
int n, pes;
double x, sum, h;

/* Declare promoted versions of variables */
pe double pe_x, pe_sum;

these promotedariables (pe_x and pe_sum) are arrays disttited across the pe memories (indicated by

the the storage class pe in the last declaration).



-149-

Next, the ideal parallelism width for the loop can be computed and an appropriate number of proces-
sors allocated. The code is:

/* nis the number of loop iterations */
scanf("%d", &n);

int pe_count, depth;

pe_count = pe_avail();

depth = (n + (pe_count - 1)) / pe_count;
pe_count = pe_alloc((n + (depth - 1)) / depth);

this computation legs pe_count as the ideal number of PEs (rounded up to a multiple of 4egi the
number of PEs initially wailable. Notice that here we are ignoring process granularity issues because we
are discussing a SIMD get machine which is capable of usireryfine grain parallelism; these issues are

discussed in-depth in Chapter 8.

Finally, the code to perform the assoaiatreduction must be created. Since the number of iterations
is possibly much lgrer than the number of processes, each PE maydogiteng a number of iteraticn’
worth of additions to sum. It is not necessary to make summationsee structued within eab PE; only
the summations of results in each PE should be tree structured. The resulting parallel code appears in List-
ing 7:7.
This code also assumes that no loop unrollingiwaiirag is done (although such loop transformations
are often desirable [EII85] [Nic85]). If the loopaw unrolled/unnzeled, the techniques discussed in Chap-

ter 8 would apply

Note that on some machines, particularly small MIMDs, a linear summation across theutEbav
more eficient for the final collection of sum than the tree summatiaregiabee. This is due to a higher
cost being associated with tree-structured, digteidh, synchronization than is associated with centralized

synchronization.



-150-

/* Declare ordinary (CP) variables */
int n, pe_count, depth;
double x, sum, h;

/* Declare promoted versions of variables */
pe double pe_x, pe_sum;

scanf("%d", &n);

/* Compute ideal width & allocate PEs */
pe_count = pe_avail();

depth = (n + (pe_count - 1)) / pe_count;
pe_count = pe_alloc((n + (depth - 1)) / depth);

/* Compute h = 1.0/ ((double) n);
t1 = (((double) n) - 0.5) * h;
t2=0.5*h;

t3 =h * pe_count;

/* SIMD code for linear summing in each PE */

pe_sum = 0;

for (pe_x=t2+(pe_number*h); pe_x<=t1; pe_x+=t3) {
pe_sum +=4.0/ (1.0 + pe_x * pe_x);

/* Do the tree additions */
sum = treesum(pe_sum, 0, pe_count);

/* If later code uses x’s value, set it right */
x =1t1;

Listing 7:7: Parallelized Looping Example Code



-151-

This page is intentionally blank.



-152-

Irr egular Code Rarallelization

When concurrencdetection is performed, in general, it is nofidifit to find huge amounts of paral-
lelism — hut most of it is not useful for axgn taget machine. Hence, igalar code parallelization is pri-
marily concerned with increasing the granularity of processes (increasing the computational content of each

process).

This chapter presents rules for obtaininiicefnt parallelism from irrgular code — code which may
contain arbitrary control constructs including conditionals, loops, and subroutine calls. These paralleliza-
tions are particularly well-suited for dynamically-scheduled MIMD computers. A complatapée of

irregular code parallelization for such a machine is algergi

1. Process-Rckaging Rules

Irregular code includes géons of code which may incorporate loops, conditionals, and subroutine
calls; hence, parallelization will depend on the ability to find paratkgtgion streams that did not all orig-
inate in the unwinding of iterations of a loop. This is quitéed#nt from parallelization based on tradi-
tional vectorization technologywvhich deeply analyzes only the bodies of loops of a certain kind, namely

those which correspond to FORAN DO loops.

The most commonxample of an irrgular code parallelization is txecute calls to non-interfering
subroutines/functions in parallel [DiK84] §iB5] [Ban86] [TI86]; this is essentially the only parallelism
used by functional languages. Leswiohs irrggular code parallelizationsvialve grouping arbitrary sets
of instructions, including conditional and/or looping constructs, into packages which caredwged

simultaneously: forxample, &ecuting multiple unrelated loops simultaneously

The theory behind irgular code parallelization iscactly that which is presented in Chapter 5 —
concurreng detection. Irrgular code parallelization is more than concuryetietection, havever, in that
for concurreng detection, the set of gens to be parallelized is &d, whereas irgular code paralleliza-
tion must gneate the gouping of instructions intoegions which will result in dicient parallel gecution.
Further in creating these géons, additional code must be created to encapsulate the code forgiach re

This is wly the refined-language approach distinguishes concyrdtection from process packaging.



-154-

While it is true that additional code also must be created to parallekoeiteon of the body of a
loop, the structure of the additional code &wsimple and the associated cost x#ogiting that code is
typically low. In parallelized irrgular code, the costs associated with synchronization and process cre-
ation/termination are often quite ¢g, hence these costs playesyvsignificant role in determining thefief

cieng of the resulting code. Kaver, these costs are not easily obtained»an@ning the code.

The following sections outline rules for packaging.

1.1. RPackage \alidity

To create packages, the compiler first performs concwrréetection, then re-partitions code into
regions of a granularity more appropriate for thegéarmachine, and finally encapsulates eadfione
within additional code for process creation/termination. In re-partitioning the code giaggthere are a
few constraints which cannot be violated; in terms of analysis structures wsttbefore concurreryc
detection has been performed, these constraints wa @ Chapter 5. These constraints may also be
expressed using the results of concuryedetection on the original set ofgiens:

Constaint 1:

Regions r. and f, can be meaged into a ne region, Tij if

there does notst a rgion r,, such thatr<r, < I

Constaint 2:

If regions r. and rare to be maged into a ne region, Tij the meger is l@al if
< is false;
if this is condition is met,ijris r, followed by 2

The first constraint is intended tocéd the problem of generating code fogimns with internal synchro-
nization, the second constraint simply insures that thiemeresulting from the mger has the same func-
tionality as the componentgi®ns would have in the sequential program. Since a loop in the code creates a
cycle which violates constraint 1, as a special case, loops are treated as “nested” graphs:

. the constraints alve apply to code ggons contained within a single iteration of a loop (ignoring the

backward branch and all gions outside the loop) or

. the constraints alve apply to code ggons which contain gnloop(s) completely within indidual
regions.



-155-

1.2. Package Choice

The constraints gen abee, when applied to a typical programagions at the intermediate-code
instruction lerel, generate an incredibly & number of possible parallelizations: the number &éraift

valid sets of rgions eplodes. Inthe code a compiler generates, just one of these is used.

There is only one principle to adhere to in chosing the segafire (processes) for code parallelized
for speed-up:
No code should be spaed as a process unless doing so will, with some probabidisylt in

faster completion of the entire progranaxecution than if the code wergezuted sequentially
appended to another process.

However, this is not easily implemented.

The major complications are computing tixe@ution cost of a gton of code and determining which
little potential processes (initial igions + encapsulation code) should be re-grouped into usadpypeo-

cesses.

1.2.1. Execution Cost Of Code

As ary assembly-language programmer Wit is quite dificult to determine thexecution time of
a program just by>@amining the instructions which it contains. Thidfidiflty is rooted in at least geral
run-time \ariable quantities: instructionxecution time, number ofxecutions of each instruction, and

availability of machine resources.

1.2.1.1. Instruction Execution Tme

Individual instructions may takdifferent amounts of time tokecute depending on their operarad-v
ues and run-time interference from othevides. Fr example, instructions such as multiply andideé

often will execute muchdster or slaver depending on the number of 1-bits in the operatdes.

In MIMD computers whose processors communicate with main memory through a shared b
interconnection netark, the time to perform a memory-based operation such as a load or storargnay v

widely depending on memory tfaffrom other processors.

Since these &f#cts cannot generally be kmo at compile-time, it is necessary for the compiler to
malke reasonable (probabilistic) guesses about them. In addition, sincgitire neegrouping operates on

the intermediate form, rather than on machine instructions, it iena@mnt for the compiler to use estimates



-156-

of intermediate instruction costs. These costs also may be approximate if the translation from intermediate
code into machine code is comyleFor example, the cost of an intermediate code tuple which represents a
function call is essentially impossible to compute (especially if the function body is compiled separately);
the cost of a tuple for which there are maossible machine code templates (each withfardift cost) is

also dificult to compute.

A crude, lut often acceptable, approximation is to assume that each intermediate instxestites
in 1 unit of time, &cept for function/subroutine calls, whickegute in T units of time where T >> 1. This

is the approximation used in the first RC compiler [Ste86].

1.2.1.2. Executions Br Instruction

Since irrgular code rgions may include control structures, some instructions withigiarrenay be
executed may times each time the gin is entered, whereas others may Xeceted only once punder
certain conditions, perhaps not at all. It is, therefore, vital that the cost computed dmmaimeorporate
“execution count multipliers” weighting thex@cution time of each instruction within thegien by the

number of times it isy@cuted.

In general, the problem of computing these weights is cleargrsion of the classic halting prob-
lem; hence, it cannot be precisely smlv Havever, in some cases it can be sdvand, in those cases
where it cannot be sadd, it is possible to substitute a probabilisatue — the pected number okecu-

tions per rgion entry

To determine these weights, it is genient to consider the contents of eadiae as a control-flo
grapi®. The graph of each géon should be straightened: adjacent basic blackad B, such thar must
be folloved by and no other basic block fies directly intog, should be mered into a single basic block.

All instructions within a basic block in a particulagien’s straightened control-flograph will hae
the same weightingattor hence, the compiler need only compute weightings for each of the basic blocks.
There are just a Ve cases:

. Start Basic Blok. The \ery first (unconditionallyecuted) basic block in ag®n is gven a weight-
ing of one: it is recuted ractly once per iggon entry

59. This is not, hwever, the preferred implementation. It is mordi@ént to determine the
weights as the control-flograph is constructed — each intermediate instruction is associated
with a cost (or cost function) prior to concurrgndetection. The algorithm is discussed here
simply because the results it generates are not used until this stage and there is no conceptual
need to compute them earlier



-157-

Divergence Of Flow. Wo basic blocks which are, foxample, the THEN and ELSE clauses of an
IF statement, do not each ka the samexpected gecution count as the basic block which con-
tained the conditionalxpression of the IF. The xecution counts for the THEN and ELSE basic
blocks added together must equal tkeceition count for the IF conditiols’ basic block. Branches
involved in gcles are treated specially (see blo In general, wherer there is a dergence of
control flav, the expected gecution counts are related as:

E(execution count) =

X
Probability = p Probability = (1-p)
E(execution count) = E(execution count) =
p*X (1-p) * x

where E(y) is thexpected alue of y. The same concept can also be applied to arbitrary mapti-w
branches. ¥ipically, since the branch probability is not kwg the compiler wuld guess that all
branch alternaties are equiprobable, with probability 1/n for each arc in arap-giwergence.

Corvergence Of Flow. Continuing the prieus eample, gentually the flav paths through the
THEN and ELSE clausesowld once agin meet. The »pected recution count of a basic block
where tvo or more flav paths comerge is the sum of thexecution counts on all cearging arcs.
Branches iwolved in gcles are treated specially (see b8lo Corvergence of control fl relates
the epected gecution counts as:



-158-

E(execution count) = E(execution count) =
X y

E(execution count) =
X+y

. Graph Cycle. Arcs which form a graptyde are ignored in the priwus cases and are processed
after the abee rules hae been applied. Code within a loop iselik to be &ecuted map times,
hence, when aycle in the control-flv graph is located, the weights of all basic blocks within the
cycle are multiplied by the number of iterations made by the loop. Code which is within the loop,
but is executed once before the loop test, hasxéxetion count multiplied by the the number of-iter
ations + one. Consider the follng graph (in which dotted bes represent entire subgraphs):



-159-

E(execution count) = | )
00p &ecutes

X - . .
i iterations
E(execution count) = E(execution count) =
(i+1) * x i *x

-

E(execution count) =
X

Chapter 7 discussed some methods by which the number of loop iterations may be determined. If
these methodsalfl to produce a weight, the compiler can simply assume some number — 2 is a con-
senative guess.

Better weighting &lues can be obtained by profiling the ced®ecution with test data [Fis84]ubthis is

awkward.

These weighting ideas are notwneln some sense, all global optimizations are based on theeabo
weightings. Br example, it is clear he register allocation is &cted. Another natural optimization possi-
bility is to move code to blocks with Weer execution counts or to weite the control structure so that the

execution counts are \\er.

1.2.2. Fundamental Bounds On Bckage Size

Given the abee cost formulation, and information about costs incurred in process creation/termina-
tion (which includes communication costs, since thesalatescription of gions insures that gions com-
municate only at entry¥&), it becomes possible to malsome statements about absolute boundsfen ef

cieng/ of a choice of rgion groupings:



-160-

Wherever possible, mgions should be created d@r enough so that the cost for the parent
process to create/terminate a procesxézute the rgion is less than thexpected gecution
cost of the rgion.
This guideline states that, if a processwid tale longer to start/stop as a parallel operation tharoitiav
take to complete appended to the current sequential process, then it should be appended to the current

sequential process (i.e., be part of thgtae rather than a separatgimn).
An interesting, and important, corollary to this is thagardless of the internal parallelism:

A subgraph of the control-flo graph which is of cost less than twice the cost to create/termi-
nate a process should be placed in a singieme
since it is impossible to speedugeeution by parallelism using only one process and, as discusse #&bo
does not speedup computation to create a process fgioa rehich will execute sequentially for less time

than it tales to create/terminate a process.

1.2.3. Rarallelism-Width Adjustment

A secondary but obviously important, consideration is that enough parakekatable processes
should be made so that the mactsr@ll parallelism can be used tdesdt speedup. There aredvbasic
approaches to adjusting the parallelism-width of the generated code to match the machine: static adjustment

and dynamic adjustment.

Static parallelism-width adjustment is accomplished by the compiler determining, at compile-time,
exactly what processes will be createdor Fexample, code for VLIWPipelined, and Systolic computers

typically has a parallelism width which is éd at compile time: the mostteeme kind of static adjustment.

A less atreme \ersion of static parallelism-width adjustmerauwd be typical of code generated for
MIMD computers by programmers writing irxg@icitly-parallel languages. Where a parallel process is
desired, one is blindly spaned; the aailability of another pisical (or at least logical) processor is simply
assumed. Of course, such blind wpéng can easily result in too maprocesses for the machine, thereby

wasting significant amounts of time simulating multiple processors on egsicgdiprocessor

Dynamic parallelism-width adjustment camoa this waste. Br MIMD and SIMD machines,
instead of blindly spaning processes, code can be generated to check the number of procesisine a
at runtime, and only to sp@ a nev process if there is a processor freexeceate it. If no additional pro-

cessors were free, theovk is appended to one or mordsting processes.



-161-

The concept of parameterizing code by the machine widtr isdm nev; it has long been the pre-
ferred process structure for these&machines. Hugever, there is a significant mevariation on the idea
[DiK85a]. Rather than merely checking to see if additional processorsvaikalale, a parallelizing com-
piler can generate code to also check runtime conditions which, although undecidable at compile time, can

be answered at runtime and can result in increased parallelism.

As others hee obsered [EII85], a parallelizing compiler “kmgs” where it did not hae suficient
information aailable to guarantee that parallekeeution of two operations is safe. Imdt, not only does
the compiler “know” when it does not “know” enough to perméingiation of paallel code hut it has a
good estimate of how mué would gain if it did “know” [DiK84]. For example, suppose that weuvasthe
following source code:
afi] =5;

a[j] = 6;

If the compiler cannot determine that i is ver equal to j, the olious answer is to generate sequential

code which looks lig:

{all=5;}
{af]=6:}

The casual obsegev might @en suspect that if static floanalysis prees that i will sometimes, bt not
always, be equal to j, the coding\gin abee is the only possible. kaver, this is not the case.

If the two statements (or géons) were stiiciently expensve so as to be evth computing in parallel

(which we do not claim of thexample given), we can profit greatly from generating code as:

/* Are a[i] and a[j] aliases? */

if (i ==J) {
/* Yes: a[i] = 5; is dead -- don’t bother */
af] = 6;

}else {

/* No: Execute statements simultaneously */
parallel({ afi] = 5; }, { a[i] = 6; });

Because, in general, agien in which a potential conflict for parallekexution arises usually contains a

dead computation in the case whedhe conflict occe: The compiler might “aste” some memory in



-162-

generating tw code streams and a tesif bach of the streams is probaldgter to recute than the ofp

ous sequential encoding. The parallelized encoding is probably emten f

2. An Example: RC Quicksort

In order to demonstrate the parallelization ofgridar code, this section wilikamine in-depth the
parallelization of anxample code: the same RE@rsion of quicksort which appears in Listing 3:2. Quick-

sort is typical of ecursive “divide and conquer” algorithms used in languagesfiscal and C.

The taget machine for thisxample is a ipothetical multi-usedamge-scale, shared-memory MIMD

computer

The first step in automatically parallelizing the RC codemgjiabeoe is to compile it into intermedi-
ate instructions and to construct the contrafigraph. In the interest of simplifying the discussion, the
details of the intermediate instructions are ignored in thewallp exposition; hevever, it is important to

recognize the basic blocks which form the nodes of the contmlgilaph. These basic blocks are:



-163-

Basic Blocks in RC Quicksort

Code for Basic Block Name of Block
i = 0; j = count(a)-1; A
X = a[count(a) / 2];
afi] < x B
+4+i; C
x < afj] D
-; E
i<=]j F
w = a[i]; a[i] = a[j]; G
afjl = w; ++i; -j;
i<=j; H
part(a[w], below,(w<=j), mid,(w<i), above);
count(below) > 1
sort(below); J
count(above) > 1 K
sort(above); L

and, when combined with the controlvlanformation, form the control-fls graph:



-164-

O~ W~ >

w)

——

m

— | T 7 () = Tl

~ e X e G |-

End

Figure 8:1: Control-Flow Graph Of RC Quicksort

Within this graph, there are three loops:

. A while loop with body B and C



-165-

. A while loop with body D and E
. Ado ... while loop with body B, C, D, E, F, G, and H

none of which can va execution of its body for étiently parallelized across iterations. There is parallel-
ism in that the loop with body B and C reads th&ies of x and a[] and modifies the &riable i, whereas
the loop with body D and E reads x and a[] and modifies thariable j; these tvo loops can bexecuted

in parallel with each other

However, the primary source of parallelism in quicksort is not the simultane@gution of these
loops. The tw recursie invocations of sort, in blocks J and L, may proceed in parallel sinceytioper
ate on disjoint portions of a. Although thisowld be a&tremely dificult (perhaps impossible) for a com-
piler to recognize through analysis of the C asdal ersion of quicksort, the parallelism of the calls is
trivially recognized by an RC compilervgn the code in Listing 3:2. The compileowid also recognize

that | and J can bexecuted in parallel with K and L.

In addition, there is at least some fugeained parallelism within basic blocks (particularly in A and

G), although he much depends on thevid of granularity at which analysis is perforrfizd

Assuming that our tget machine is a dynamicalyhseriuled, shad-memorylarge-grain MIMD (as
stated earlier), not all of this potential parallelism will speedup the progrxecution. The compiles’
task is nav to determine the packaging of the parallelism which will result in maximum speedwardT

this goal, it vould compute weights xpected gecution counts) and costs somethingilik

60. Although it would be more accurate to present a graph with operations awéhefehose
used in Chapter 5, if this were done, the resulting gramiidvspan manpages. Such a graph
is unusable for a humanythquite comenient for a parallelizing compiler



-166-

Sequential Basic Block Costs in RC Quicksort
Name of Block  E(execution count) phrox. Cost
(in Seq. execution)
A 1.1 12*1 - 12
B 3*3-9 5*9 . 45
C 2*3 .6 2*6 - 12
D 3*3-9 5*9 . 45
E 2*3 -6 2*6 - 12
F 3.3 3*3-9
G 05*3 - 15 14*15 - 21
H (05+05)*3 -3 3*3.9
| 1-1 18*1 - 18
J 05 - 05 102*0.5 - 51
K (05+05) - 1 5*1 .5
L 05 - 05 102*0.5 - 51

It is important to note that the cost numbers are sdratarbitrary and that thexgected gecution counts
are listed elative to the completely sequentiadeeution of the code. oF example, the compiler has
guessed that basic block L iseeuted about half the times that sort is entered —utithe epected gecu-

tion count of block L is 1if L is vieed as a igion unto itself (an independent subgraph).

Suppose that the process creation/termination cost is 15 (it might well be a function of memory lay-

out, etc., in a real machine [SaH86]). It is thainly easy to mad the follaving obserations:

. None of the fine-gin parllelism is useful. In order to speedup the operation using fine-grain paral-
lelism, it must be possible to create at least pnocesses of cost (relatito the generated structure)
15 or greater The lagest possible source of fine-grain parallelism is basic block Git—wen con-
sidered by itself, G has axecution cost of only 14, which is less than half whatdtiid need to be
for the parallelism to speedugezution.

. Parallel execution of loops BC and DE is useful. Thieaution cost of loop BC treated as giom
unto itself is (3 * 5) + (2 * 2) = 19, which is greater than 15; the same is true for the cost of DE as a



-167-

region unto itself.

. Parallel execution of IJ and KL is useful. Excluding the part statement (since it cannotdeeeted
in parallel with KL), the gecution cost of a ggon holding 1J is 5 + (0.5 * 102) = 56, which is greater
than 15; the same is true for the cost of KL ag@mreunto itself.

which straightforvardly lead to generation of a parallel code structuee lik



-168-

;

’ B

A i

C

invoke BC End

invoke DE

D

wait BC, DE I

E

End

T = @ 7 T

count(belav) > 1

I
J

-—

art(...
part(... End

%

-

Figure 8:2: “Easy” Parallelization Of RC Quicksort

This parallelized form implements dynamic parallelism-width adjustment using the concept @blam in

instruction.

In [DiK85a], we obsergd that dynamic adjustment can be doesy \eficiently by careful choice of

code sequences for implementing call andwpa- using the same technique for passimgarent alues



-169-

to either It is possible that the dérence could be as small as a single instruction, which we gaken

Invoke simply checks to see if another PEvailable and either calls or spas based on the answer

However, although the ahe@ is a walid parallelization and it can bepected to adjust its parallelism

width to match machine PEailability and to obtain good speedup, it is not optimal.

Parallel execution of 1J and KL is useful, and thedwegions contain as many instructions as possi-
ble, ut the the inclusion of | with J actually lownethe &ecution cost of thesgion. A reduction in the cost
within the parallelized code, without a reduction in thierbead of process creation/terminatiomées the

efficiency of the program.

The eecution cost of J as ag®n by itself is 102, as compared to a cost of 56 fogemecontain-
ing 1J; the same relationship holds for &rsus KL. In other erds, by adding | to J, the cost of I, which is
5, is qained, it the pobability that the pocess will ecute J iseduced fom 1 to only 0.5. The same
effect holds for KL relatie to L. In this gample, making somegions contain less code nezkthem lager

grained!

By this obseration, the parallelization becomes:



-170-

;

==

A 1
C
invoke BC End
invoke DE

wait BC, DE

M = U'e

End

Figure 8:3: Better Farallelization Of RC Quicksort

but even this isnt optimal.



-171-

The final step is to truncate the gpéng tree. In the alwe parallelization, when the second process
of a pair of parallel processes is wp&d, there is nothing left for the parent to db Wait. Instead, to cre-
ate N computing processes from one parent, the compiler should generate code whithrepanore than

N-1 processes:



-172-

’ B
A 1
C
invoke BC End
D
1
E
wait BC
F
1
G
1
H
1
|

wait J

End

Figure 8:4: “Optimal” MIMD-ization Of RC Quicksort



-173-

By the measures\gn abee, this ersion is probably the best parallelization possible.



-174-

Summary

And Conclusions

The refined-language approach to compiling for parallel supercomputers is an holistic approach to
solving the problem of compiling, and programming, for speedup-oriented parallel supercomputers. In the

current vork, this approach as decomposed into twparts:

(1) language design and

(2) automatic parallelization technolagy

Numerous small>amples of the application of the refined-language approach\ae igi both of these

aspects, and a reasonable theoretical backgrounekis. gi

However, since the refined-language approach is intended to be a complete methodology independent
of choice of base language andyttrmachine, this thesis deliberatelyials measures which are based on
specific choices. d¢f example, although we ka a wrking RC compiler (and a number of small test com-
pilers), we quote no speedup benchmark results. Aside fronathahft the approach transcends these

implementation details, benchmarks are not reported because:

. Many of the impreements wer previous approaches are qualit&t not quantitatie. For example,
until [Con86], we were the only automatic parallelization group operating on a dialect of the C lan-
guage, and our compiler is gated for a MIMD whereas theirs generatestor code. Indct, may
of the taget machine types which weveaconsidered & neser befoe been the taet of a paal-
lelizing compiler: a goodxample is [RK86], which is a MIMD/VLIW tybrid.

. Even for machines which fia been tagets of other compilers, we V& concentrated on &sfent
parallelizations — the techniques of, foxample, [Kuc78] [AIK82] and [FIE84] are all ary well-
developed and an of them easily can be incorporated in the fram of our parallelization
approach. 6r this reason, we felt no compulsion to implement parallelization techniques other than
our awvn (although an ingrated implementation of these other techniques in our compilers is a long
term goal).

. In this field, numbers areewy misleading. &r example, at one point, we considered using the paral-
lelization of the FORRAN WHETSTONE benchmark as a test. This codaswdeliberately written to
thwart clever optimizing compilers and, indeed, it doesahwectorization &irly well. The refined-
language MIMD-ization wuld perform ery well on the refinedersion of this code, byxecuting
each of the sen separate loops in this benchmark as a separate process/e HHoWHETSTONE is a



-174-

program that reads no input — the entire program can be reduced, by a tadicisightforvard,

constant-folding compilation technique, into just & f&/RITE statements! @also disceered a

number of benchmarks whichowld consistently result in supknear speedup — mostly due tovha

ing more rgisters and better cache performance in the multiple-processarton.

That the refined-language language constructs candprdetter information for automatic paral-
lelization is not disputed — only the ease/consistemith which pogrammes will employ them has been
guestioned, and the answer can only be found after there istemsiee user community Likewise,
because our parallelization is compatible with othehmégues curently in use, the primary concern is not
“How do these techniques compete?”; ratkiee question is “He much atra parallelism will thg find?”

It is agreed that the answer is at least somegbantifying “some” will tak a long time.

Research applying the refined-language approaclarious combinations of language andgédr
machine is currently undeay at both Purdue Uversity in West Lahyette, Indiana, and at the Center for
Distributed Processing at $tmns Institute of &chnology in Hoboén, Nev Jersg. Additional refined C
and FORRAN compilers, and seral \ersions of CRerFLEX, tamgeted for kbrid MIMD/VLIW,
MIMD/SIMD, and MIMD/Vector machines are planned. An imyd \ersion of the softare tool CPRE-

FINE and FOR'RAN-PREFINEare currently under delopment.



-175-

This page is intentionally blank.



-176-

Bibliography

[AbM86] W. Abu-Sufih and A. D. Maloy “Vector Processing on the Alliant FX/8 Multiprocessor
Technical Report, Number CSRD 541, Wity of lllinois at Urbana-Champaign, 1986.

[Ada80] Ada Pogramming Languge, Military Standard, Number MIL-STD-1815 (the green book),
Department of Defense, December 1980.

[AgA82] T. Agerwala and Arvind, “Data Fle System$,|IEEE Computey February 1982, pages 10-13.
[AhK] A. V. Aho, B. W Kernighan, and.R. Weinbeger, Avk — A Rttern Scanning and Bcessing
Languaye, UNIX Manual, undated.

[AhS86] A. V. Aho, R. Sethi, and J. D. Uliman, CompdePrinciples, €chniques, and dols, Addison
Wesle/, Reading, Massachusetts, 1986.

[AhU77] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addiscesly, Reading, Massa-
chusetts, 1977.

[AIB86] R. Allen, D. Baumartner K. Kennedy A. Porterfield, “PDOL: A Semi-Automatic Brallel
Programming Assistafit1 986 International Conference oraRllel Processing, August 1986,
pages 164-170.

[AIK82]  J. R. Allen, K. Kennedy “PFC: A Program to Casert Fortran to Rrallel Form; Department
of Mathematical Sciences, Rice Weisity Houston, Report MASC TR 82-6, March 1982.

[AlI83] J. R. Allen, Dependence Analysis for Subscriptadalles and its Application to Bgram
Transformations, Rice Uwérsity, Ph.D. Thesis, April 1983.

[AlI86] F. Allen, “The Rarallel Translator ProjectNASA / ICASE Rarallel Languages and fron-
ments Vérkshop, Neember 1986.

[Ame86] Ametek system 14, Ametek, Arcadia, California, 1986.

[AnA86] M. Annaratone, E. Arnould,.TGross, H. TKung, M. S. Lam, O. Menzilicioglu, K. Sarogk
and J. A. Vébb, “Warp Architecture and Implementatibf®roceedings of the 13th Annual
Symposium on Computer Architecture, June 1986, pages 346-356.

[AnC82] P Anklam, D. CutlerR. Heinen Jr and M. D. MacLaren, Engineering a Compile AX:11

Code Genation and Optimization, Digital Equipment Corporation, Bedford, Massachusetts,
1982.

[ArC84]  Arvind and D. E. Culler"Why Dataflav Architectures,CH2022-2/84/0000/0027 IEEE, 1984,
pages 27-32.



-176-

[ArG78]

[Are85]
[Bab84]

[Bac78]

[Ban86]

[BrM]

[BuC86]

[Bur84]

[Cho83]

[Cho86]

[CoK86]

[CoS70]

[Con85]
[Con853]
[Con86]
[Cuws2]

[DaK82]
[DeG84]

[DeS86]

Arvind, Gostelov, and Plogfe, “The (Preliminary) ID Report; An Asynchronous Program-
ming Language and Computing Machird|T, May 1978.

Areté Series 1000, Areté Systems Corporation, San Jose, California, 1985.

R. G. Babb I, “Rrallel Processing with Lge-Grain Data Fhv Technique$,IEEE Computer
July 1984, pages 55-61.

J. Backus, “Can Programming Be Liberated from thie Meumann Style? A Functional Style
and Its Algebra of Programiszommunications of the &M, Volume 21, Number 8, August
1978, pages 613-641.

A Direct Rarallelization of Call Statements — A\R®v, Technical Report, Urersity of Illi-
nois at Urbana-Champaign, April 1986.

J. D. Brock and L. B. Montz, ‘fenslation and Optimization of Data ®ld®rogram$, Techni-
cal Report, MIT

M. Burke, R. Cytron, “Interprocedural Dependence Analysis aamdlRlization, SIGPLAN
Symposium on Compiler Construction, 1986, pages 162-175.

M. Burke, An Interval Analysis Appad Toward Interpiocedual Data Flow IBM, Yorktovn
Heights, N&v York, Research Report RC 10640 (#47724), July 1984.

F. C. Chav, “A Portable Machine-Independent Global Optimizer — Design and Measure-
ments; Technical Report, Number 83-254, Stanfordugnsity, December 1983.

P. Chav, “MIPS-X Instruction Set and ProgramerManual, Technical Report, Number
CSL-86-289, Stanford Uwnérsity, May 1986.

K. D. Cooper K. Kennedy L. Torezon, “Interprocedural Optimization: Eliminating Unneces-
sary RecompilatiohSIGPLAN Symposium on Compiler Construction, 1986.

J. Cocle and J. TSchwartz, Pogramming Languges and Their Compilsr Course Notes,
Courant Institute, Ne York, 1970.

Cornvex FORTRAN, Corex Computer Corporation, Richardsorex@s, 1985.
Corvex C-1 Computer System, Gar Computer Corporation, Richardsorexas, 1985.
\ectorizing C Compiler, Carex Computer Corporation, Richardsorex@s, 1986.

Curtis, R. and Wtie, L., “BUGNET: A Delugging System for &allel Programming B#iron-
ments, CH1802-8/82/0000/0394 |IEEE, 1982, pages 394-399.

A. L. Davis and R. M. Kller, “Data Flav Program GraphsIEEE Computey 1982.

J. B. Dennis, G. R. Gao, and K. Wdd, “Modeling the Wather with a Data Rlo Supercom-
putet’ IEEE Transactions on Computersplme C-33, Number 7, July 1984, pages 592-603.

N. Delisle and M. Schartz, “A Programming Brironment for CSP Proceedings of SIG-
PLAN 1986 Symposium on Language Intexés and Programming #ronments, 1986, pages
34-41.



-177-

[Den86] J. Dennis, Personal Communication, SIAM General Conference, 1986.

[DiG83] H. Dietz and I. Gerri, PILE Refence Manual, Polytechnic Institute of Wé&ork, 1983.

[DiK84]  H. Dietz and D. Klappholz, “Refining A Ceantional Language for Race-free Specification of
Parallel Algorithms, 1984 International Conference omRllel Processing, August 1985.

[DiK85] H. G. Dietz and A. D. Klappholz, “RISC CPU Design for MIMDgresented at the Second
SIAM Conference on &tallel Processing for Scientific Computing,Jember 20, 1985.

[Dik85a] H. Dietz and D. Klappholz, “Refined C: A Sequential Language é&wallel Programminy,
1985 International Conference oarBllel Processing, August 1985.

[DiK86] H. Dietz and D. Klappholz, “Refined FORAN: Another Sequential Language foarBllel
Programming, 1986 International Conference onaillel Processing, August 1986, pages
184-191.

[DiS85]  H. Dietz, K. Stein, and D. Klappholz, “Sequential Languages for Programming Highayle?
Computers, presented at the Second SIAM Conference amaltel Processing for Scientific
Computing, Neember 21, 1985.

[Die83] H. G. Dietz, Compiler Design and Construction I, Graduate Course Notes, Polytechnic Insti-
tute of Nev York, Fall 1983.

[Die84] H. G. Dietz, Compiler Design and Construction I, Graduate Course Notes, Polytechnic Insti-
tute of Nev York, Spring 1984.

[Die87] H. G. Dietz, Loop Brallelization by Selective Serialization, paper in preparation.

[Dij75] E. W Dijkstra, “Guarded Commands, Nondeterminaan Formal Dervations of Programs,
Communications of the @M, Volume 18, Number 8, August 1975, pages 453-457.

[EIX85] System 6400, EIXSi, San Jose, California, 1985.

[ElI85] J. R. Ellis, Bulldg: A Compiler for VLIW Achitectues, ACM Doctoral Dissertation Ward,
MIT Press, 1985.

[FIE8B4] J. A. FisherJ. R. Ellis, J. C. Ruttenig, and A. Nicolau, “Brallel Processing: A Smart Com-
piler and a Dumb Machiriey ale Unversity, 1984.

[Fis84] J. A. Fisher “The VLIW Machine: A Multiprocessor for Compiling Scientific CSdESEE
ComputerJuly 1984, pages 45-53.

[Fle85] The Fle/32 Multicomputer System OvemvieFlexible Computer Corporation, Richardson,
Texas, 1985.

[GaL83] D. D. Gajski, D. H. Larie, D. J. Kuck, and A. H. Sameh, “Cedaf echnical Report, Uner
sity of Illinois at Urbana-Champaign, December 1983.

[Gan80] M. Ganapathi, “Retgetable Code Generation and Optimization Using AttebGrammars,
Computer Scienceethnical Report, Number 406, Waisity of Wsconsin-Madison, Decem-
ber 1980.



-178-

[GeR85]

[Gels6]

[GoG83]

[Got86]

[GrL86]

[Gro83]

[GuF86]

[GuWS0]

[HaJ86]

[HIES6]

[HoC85]
[Hoa78]

[Hof79]

[lan82]

[INm84]

H. H. Gehani and WD. Roome, “Concurrent C — An @wiew,” 1985 Winter USENIX Con-
ference, 1985.

D. Gelernter “Portable Rrallel Programming Bsironments: LINDA (real), SYMMETRIC
LISP (potential}, Presented at NSA/ICASE Rarallel Language and Einonment Wrkshop,
November 1986.

A. Gottlieb, R. Grishman, C. Rruskal, K. PMcAuliffe, L. Rudolph, and M. SnifThe NYU
Ultracomputer — Designing an MIMD Shared Memorgrddlel Computet IEEE Transac-
tions on Computers,olume c-32, Number 2, February 1983, pages 175-189.

A. Gottlieb, “An Owerview of the NYU Ultracomputer ProjettUltracomputer Note #100,
Courrant Institute, Ne York, July 1986.

T. Gross and M. S. Lam, “Compilation for a High-Performance Systolic ARayceeding of
SIGPLAN 1986 Symposium on Compiler Construction, June 1986, pages 27-38.

T. Gross, “Code Optimization of Pipeline Constrain@ymputer Systems Laboratqr§tan-
ford University, Technical Report No. 83-255, December 1983.

A. Gupta, C. brgy, A. Newell, and R. Vedig, “Parallel Algorithm and Architectures for Rule-
Based SystenmisProceedings of the 13th Symposium on Computer Architecture, June 1986.

J. Gurd, I. Vdtson and J. Glauert, A Multilayger Data Flow Computer &hitectuie, Technical
Report, Unversity of ManchesteMarch 1980.

D. T. Harper lll and J. R. Jump, “Performanceaktnation of \éctor Accesses inaallel Mem-
ories Using a Siwed Storage SchemeRroceedings of the 13th Symposium on Computer
Architecture, June 1986, pages 324-328.

M. D. Hill, S. J. Eggers, J. R. Larus, G. @ylbr, G. Adams, B. K. Bose, G. A. Gibson,\.
Hansen, J. Eller, S. |. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. dodVB.
G. Zorn, PN. Hilfinger, D. A. Hodges, R. H. Katz, J. Ousterhout, and D. &tdPson, SPUR:
A VLSI Multippcessor \frkstation, Bchnical Report, Number UCB/CSD 86/273, \émsity
of California at Berkley, 1986.

M. Horowitz and PChaw, “The MIPS-X MicroprocessgrProceedings of \WWscon 1985, 1985.

C. A. R. Hoare, “Communicating Sequential ProceSsamnmunications of the &M, Vol-
ume 21, Number 8, August 1978.

Hoffman, M., “Development of a ¥ice Funnel Systefnyarious Quarterly &chnical Reports,
Bolt Beranek and Neman Inc., 1979-1983.

R. A. lannucci, “Implementation Strafies for a dgged-dken Data Flw Machine; Compu-
tation Structures Group Memo, Number 218, Massachusetts Institulecbhdlogy June
1982.

INMOS Limited, OCCAM Pogramming Manual, Prentice-Hall, Engleod Cliffs, Nen Jer
sey, 1984.



[Int85]
[Joh75]

[Jor87]
[KAI85]
[KeS81]

[Ker81]

[KIL85]

[KIag0]

[Kle83]

[KrA82]

[KuD86]

[KuM72]

[KuS84]

[KuS85]

[Kuc68]

-179-

“The ISPC", Intel Corporation, 1985.

Yacc — ¥t Another Compiler CompileBell Laboratories, N& Jersg, Computing Science
Technical Report, Number 32, 1975.

The force, Technical Report, Urersity of Colorado, January 1987.
“Mini-KAP/AF " Kuck and Associates, Inc.,weroduct release, 1985.

R. M. Keller and M. R. Sleep, “Applicatt Caching: Programmer Control of Object Sharing
and Lifetime in Distribted Implementations of Applicaé Languages, ACM
0-89791-060-5/81-10/0131, 1981, pages 131-140.

B. W. Kernighan, Why &cal is Not My &vorite Pogramming Languge, Computing Science
Technical Report Number 100, Bell LaboratorieswNersg, July 18, 1981.

D. Klappholz, Y Liao, D. J. Véng, A. Brodsk and A. Omondi, “Oward a Hybrid Data-
Flow/Control-Flov MIMD Architecture; CH2149-3/85/0000/0010 IEEE, 1985, pages 10-15.

D. Klappholz, “An Impraed Design for a Stochastically Conflict-Free Memory/Interconnec-
tion Systent,Proceedings of the 14th Asilomar Conference on Circuits, Systems, and Comput-
ers, Nowember 1980.

M. Klerer, personal communication, The Polytechnic Institute ofv Nerk, Brooklyn, Nev
York, 1983.

D. W. Krume and D. H. Acklg “A Practical Method for Code Generation Based on Exhaus-
tive Searchi,Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, June
1982, pages 185-196.

D. J. Kuck, E. S. Deidson, D. H. Larie, and A. H. Sameh, ‘dallel SupercomputingoBay
and the Cedar ApproattgCIENCE, \blume 231, February 1986, pages 967-974.

D. J. Kuck, Y. Muraoka, and S-C. Chen, “On the Number of Operations Simultaneously Ex
cutable in Brtran-Like Programs and Their Resulting SpeedlEEE Transactions on Com-
puters, December 1972.

D. J. Kuck, A. H. Sameb, R. Cytron, A. Weidenbaum, C. D. Polychronopoulos, G. Lee, T
McDaniel, B. R. Leasure, C. Beckman, J. R. BviBg, and C. FKruskal, “The Efects of Pro-

gram Restructuring, Algorithm Change, and Architecture Choice on Program Perfofmance,
IEEE Proceedings of the 1984 International Conferenceacal® Processing, August 1984.

J. T. Kuehn and H. J. Sgel, “Extensions to the C Programming Language for SIMD/MIMD
Parallelism; Proceedings of the 1985 International Conference aralel Processing, August
1985, pages 232-235.

D. J. Kuck, “ILLIAC IV Software and Application Programmiid¢iEE Transactions on Com-
puters, Wlume C-17, Number 8, August 1968, pages 758-770.



-180-

[Kuc78]

[LaL75]

[LeC79]

[LeK86]

[Li85]

[LiS85]

[LuB8O]

[Mac85]
[McH86]

[McS82]

[McS85]

[MeV85]

[MiF85]

[MiP86]

[Mis75]

[Moo82]

D. J. Kuck, The Structe of Computer and Computations,dlume 1, John \iley and Sons,
New York, 1978.

D. H. Lawrie, T. Layman, D. Bagrand J. M. Randal, “The Glypnir Langudgépmmunica-
tions of the M, Volume 18, Number 3, March 1975.

B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. Mwemer A. H. ReineyB. R. Schatz, and
W. A. Wulf, “An Overview of the Production Quality Compil€ompiler Project, Technical
Report, Number CMU-CS-79-105, Cagie-Mellon Unversity, 1979.

G. Lee, C. PKruskal, and D. J. #ck, “The Efectiveness of Computing in Shared Memory
Parallel Computers in the Presence of 'Hot SpbiBgchnical Report, Number CSRD 547,
University of lllinois at Urbana-Champaign, 1985.

Z. Li, A Technique for Reducing Data Sywronization in Multippcessed Loops, MS Thesis,
University of Illinois at Urbana-Champaign, May 1985.

K-C. Li, and H. Schwetman, ‘&ttor C — A \éctor Processing Languabpresented to ANSI
X3J11 Committee, April 1985.

S. E Lundstrom and G. H. Barnes, “A Controllable MIMD Architectufroceedings of the
1980 International Conference oarBllel Processing, 1980, pages 165-173.

T. MacDonald, “C ¥ctor SyntaX,presented to ANSI X3J11 Committee, April 1985.

S. Mchkarling and J. HennessYReducing the Cost of Branche43th International Sympo-
sium on Computer Architecture, June 1986.

J. R. McGrav and S. K. Skdzielavski, “Streams and Iteration inA: Additions to a Data
Flow Languagé,CH1802-2/82/0000/0730 IEEE, 1982, pages 730-739.

J. R. McGra, S. K. Sledzielevski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, Bybis,
and R. Thomas, SISAL: 8ams and Iteation in a Single Assignment LangealLanguae
Refeence Manual, &sion 1.2, Computing Research Groupwk@nce Lvermore National
Laboratory March 1985.

P. Mehrotra and J. &h Rosendale, “The Blaze Language: &adfel Language for Scientific
Programming,NASA Contractor Report, ICASE Report Number 85-29, May 1985.

V. Milutinovic, D. Fura, and WHelbig, “An Introduction to GaAs Microprocessor Architec-
ture for VLSI; IEEE Computey September 1985.

S. P Midkiff and D. A. Rdua, Compiler Genated Synleronization for DO Loops, &chnical
Report, Unversity of lllinois at Urbana-Champaign, Number CSRD 554, 1986.

D. P Misunas, A Computer Ahmitecture for Data-Flow Computation,eEhnical Report, Num-
ber MIT/LCS/TM-100, Massachusetts Institule @chnology July 1975.

. W. Moor, “An Applicative Compiler for a 8&rallel Maching, ACM
0-89791-074-5/82/006/0284, 1982, pages 284-293.



-181-

[NCu85] NCube €n, NCube Corporation, Beerton, Orgon, 1985.

[Nic85] A. Nicolau, “Uniform Rarallelism Exploitation in Ordinary Prograrh$985 International Con-
ference on Brallel Processing, August 1985, pages 614-618.

[Nor86]  A. Norton, “Parallel Programming Models for HighlyaRallel Processing on RPPresented
at NASA/ICASE Rarallel Language and Einonment Workshop, Neember 1986.

[Omo84] A. Omondi, A Brmal Translation Algorithm for a Data Flow Langge, Internal Report, Poly-
technic Institute of N& York, 1984.

[Ost85]  A. Osterhaug, GuideoTParallel Programming On Sequent Computer Systems, Sequent Com-
puter Systems, Inc., Bearton, Orgon, 1985.

[PaK80] D. A. Padua, D. J. Kck, and D. H. Larie, “High-Speed Multiprocessors and Compilation
Technique$,IEEE Transactions on Computers, September 1980.

[PaK86] H-C. Rark, D. Klappholz, and H. Dietz, “A Single Stage MIMD Architecture Incorporating
Smart Switching Nodes and an MIMD RISC CPldternal Report, Steens Institute of &ch-
nology, 1986.

[Per79] R. H. Perrott, “A Language for Array anc&tor Processoi'sA CM Transactions on Program-
ming Languages and Systems]iume 1, Number 2, October 1979, pages 177-195.

[PfB85] G. F. Pfister W. C. Brantlg, D. A. Geoge, S. L. Harey, W. J. Kleinfeldey K. P McAuliffe, E.
A. Melton, V. A. Norton, and J. \Iss, “The IBM Researchakallel Processor Prototype
(RP3): Introduction and Architectutdlroceedings 1985 International Conference amnaltel
Processing, August 1985, pages 764-771.

[PfN85]  G. E Pfister and VA. Norton, “Hot Spot” Contention and Combining in Multistage Intercon-
nection Netwrks; 0190-3918/85/0000/0790 IEEE, 1985, pages 790-797.

[PoK86] C. D. Polychronopoulos, D. J.ugk, and D. A. Bdua, Execution ofdPallel Loops on Brallel
Processor Systems, Warsity of lllinois at Urbana-Champaign, Number CSRD 552, 1986.

[Pra85] T. W. Pratt, “Pisces: An Btironment for Rrallel Scientific Computatich]EEE Software,
Volume 2, Number 4, July 1985, pages 7-20.

[Pra86] T. W. Pratt, “The PISCES 2 drallel Programming BE#ronment; Presented at the
NASA/ICASE Rarallel Language and Emonment Workshop, Neember 1986.

[Ree84] A. P. Reees, “Rarallel Rascal: An Extendedd®cal for Rrallel Computer$Journal of Rrallel
and Distriluted Computing, ®ume 1, 1984, pages 64-80.

[RuF83] J. C. Ruttenbegrand J. A. FishefLifting the Restriction of Aggrgate Data Motion in &allel
Processing,CH1879-6/83/0000/0211 IEEE, pages 211-215, 1983.

[SaH86] V. Sarkar J. Hennessy‘Compile-Time Rartitioning and Scheduling ofaallel Programy,
SIGPLAN Symposium on Compiler Construction, 1986.



-182-

[ScK86]

[Schso]

[SeR85]

[Seq84]

[SiS81]

[SiS86]

[SKG85]

[SnS86]

[SoD85]

[Ste86]

[Sto84]

[SuB77]

[TaH86]

[Thig6]

[ToS86]

R. G. Scarborough and H. G.okky, “A Vectorizing Brtran Compilef IBM Journal of
Research and Delopment, \dlume 30, Number 2, March 1986.

J. T Schwvartz, “Ultracomputer§,ACM Transactions on Programming Languages and Sys-
tems, VWlume 2, Number 4, October 1980, pages 484-521.

Z. Segall and L. Rudolph, “PIE: A Programming and Instrumentationif@nment for Rrallel
Processing |EEE Software, \6lume 2, Number 6, Nember 1985, pages 22-37.

Balance 8000 Systenedinical Summary, Sequent Computer Systemsydtan, Orgon,
1984.

H. J. Sigel et al, “RSM: A Partitionable SIMD/MIMD System for Image Processing aat P
tern Recognitio”i,IEEE Trans. Computers,dlume C-30, Number 12, December 1981, pages
934-947.

H. J. Sigel, T. Schwederski, J..Kuehn, and N. J. Dvs 1V, “An Overvien of the ASM Par

allel Processing Systefin Tutorial: Computer Architecture, IEEE Computer Society Press,
Washington DC, 1986, pages 387-407.

S. K. Sledzielavski and J. Glauert, IF1: An Intermediaterf for Applicative Languges,
Lawrence Lvermore National Laborator€omputing Research Group, July 1985.

L. Sryder and D. Socha, “Pek on the COSMIC Cube: The First Regtable Brallel Pro-
gramming Language and Hronment; Proceedings of the 1986 International Conference on
Parallel Processing, August 1986, pages 628-635.

G. S. Sohi, E. S. Dédson and J. H. &el, “An Eficienct Lisp-Execution Architecture with a
New Representation for List Structure$49-7111/85/0000/0091 IEEE, 1985, pages 91-98.

K. Stein, Refined C Compiler Status Report, Internal ReporgeBSselnstitute of @chnology
1986.

H. S. Stone, “Database Applications of the Fetch-and-Add InstruclifeEE Transactions on
Computers, Wlume C-33 Number 7, July 1984.

H. Sullivan, T R. Bashkw, D. Klappholz, and L. Cohn, CHoPP: Interim Status Report 1977,
Internal Report, Columbia Uversity, 1977.

G. S. hylor, P N. Hilfinger, J. R. Larus, D. A. &terson and B. G. Zorn, “lAiuation of the
SPUR Lisp ArchitecturéProceedings of the 13th Annual Symposium on Computer Architec-
ture, June 1986, pages 444-452.

Introduction to Data Leel Rarallelism, Techical Report, Number 86.14, Thinking Machines

Corporation, April 1986.

S. Tomita, K. Shibayama,. Nakata, S. ¥asa, and H. Hagava, “A Computer with Le-Level
Parallelism QA-2 — Its Applications to 3-D Graphics and Prolog/Lisp MacHid8sh) Sym-
posium on Computer Architecture, June 1986.



[TrI86]

[Vei85]

[WaG82]

[Wed83]

[Wir76]

[Wol86]

[WuJ75]

-183-

R. Triolet, E Irigoin, and PFeautrier “Direct Parallelization of Call StatemeritsSIGPLAN
Symposium on Compiler Construction, 1986.

A. Veidenbaum, Compiler Optimizations andclitecture Design Issues for Multipcessos,
Ph.D. Thesis, Urersity of lllinois at Urbana-Champaign, May 1985, pages 96-101.

I. Watson and J. Gurd, “A Practical Data Wl&€omputef IEEE Computer February 1982,
pages 51-57.

R. G. Wedig, “The Detection of ConcurrendJsing Structured Control Rig’ Carnegie-Mel-
lon University, 1983.

N. Wirth, Algorithms + Data Structies = Piograms, Prentice-Hall, Engieood Cliffs, New
Jersg, 1976, page 79.

M. Wolfe, “Advanced Loop Interchangirigare-print extended ersion of a papeProceedings

of the 1986 International Conference ardtlel Processing, 1986.

W. Wulf, R. K. Johnson, C. B. ¥ihstock, S. O. Hobbs, and C. M. Gesshkhe Design of an
Optimizing Compiler, North Holland, MeYork, New York, 1975.



